## CS 465 <br> Computer Security

MAC: Message Authentication Code

## What Assurances are Provided by Symmetric Encryption?

Assume CTR or CBC mode

- Authentication?
- Confidentiality?
- Integrity?
- Non-repudiation?


## Bit Flipping Attacks (Block Cipher)

## Modification attacks on CBC



Modification attack on CBC

## Bit Flipping Attacks (Stream Cipher)

- Plaintext:
- ACCT_NO:123-45-6789 ADD:100
- Ciphertext:
- 15b1206b7efa68b9 89 c87357507e3a27a138ca dc b2a1bb f8 eebee5


## Goals of Message Authentication

- Assure that the message has not been altered
- Assure the source of the message is authentic


## Message Authentication: Ciphertext vs. Plaintext

- Authentication of encrypted messages
- Include an error-detection code in plaintext message
- Attach a key-based error-detection code to an encrypted message
- Attach a TAG - remember the newer AEAD modes
- Authentication of plaintext messages
- Authentication without confidentiality
- Attach a key-based error-detection code to plaintext message


## Message Authentication Code (MAC)

## Dear BYU,

Thank you so much for an awesome computer security course.


## Message Authentication Code (MAC)



Figure 3.1 Message Authentication Using a Message Authentication Code (MAC)

## Three Ways to Implement a MAC

1. CBC-MAC

- Use CBC mode and a block cipher - fixed length messages only
- OMAC - for variable length messages


## OMAC1 (also called CMAC)


(a) Message length is integer multiple of block size

(b) Message length is not integer multiple of block size

Figure 12.12 Cipher-Based Message Authentication Code (CMAC)

## Three Ways to Implement a MAC

2. Hash the message and encrypt the digest

(a) Using conventional encryption

## Three Ways to Implement a MAC

3. Hash the message along with a shared key


## Design Flaw!

- Cryptographers recommend against this kind of MAC using modern hash functions
- Vulnerable to a message extension attack

- Vulnerability comes from an interactive implementation technique knows as the Merkle-Damgård construction
- Hash functions that are vulnerable when used this way: MD5, SHA1, SHA2


## HMAC

- Because of the message extension attack vulnerability, the government standard HMAC algorithm guards against this threat
- FIPS 198
- RFC 2104
$\operatorname{HMAC}(K, m)=H\left(\left(K^{\prime} \oplus\right.\right.$ opad $) \| H\left(\left(K^{\prime} \oplus\right.\right.$ ipad $\left.\left.) \| m\right)\right)$
- $K^{\prime}=H(K)$ if $K$ is larger than the block size, otherwise K
- opad $=0 \times 5 c 5 c 5 c . .5 c 5 c$, one-block-long constant
- ipad $=0 x 363636 \ldots 3636$, one-block-long constant
- IV is fixed, as with SHA-2 and other hash functions


Figure 3.6 HMAC Structure

## HMAC = Hashed MAC

- Wrong way: H(secret||m)
- Right way : $\mathrm{H}\left(\left(\mathrm{K}^{\prime} \oplus\right.\right.$ opad) $\left.\| \mathrm{H}\left(\left(\mathrm{K}^{\prime} \oplus \mathrm{ipad}\right) \| \mathrm{m}\right)\right)$


## Recommendation

- If you need just a MAC, use HMAC
- If you need encryption and a MAC, use AEAD
- See https://blog.cryptographyengineering.com/ 2013/02/15/why-i-hate-cbc-mac/

MAC ATTACK

## Let's examine the message extension attack...

- Alice and Bob share a key K
- Alice sends message M1 to Bob such that Bob knows it came from Alice
- Alice computes $\mathrm{H}(\mathrm{K}|\mid \mathrm{M} 1)=$ mac1
- Alice sends M1 and mac1 to Bob
- Bob verifies the message
- Bob computes $\mathrm{H}(\mathrm{K} \| \mathrm{M} 1)=$ mac2 and compares it to mac1. If they match, the message came from Alice.
- Or did it????


## Message Extension Attack

- Mallory can intercept a plaintext message and a mac.
- Mallory "extends" the message - adds new material to the end of the message
- She modifies the mac without knowing the key. She needs to know the length of the key.
- She replaces the message and mac with the extended message and new mac and forwards it along
- Bob receives the modified message and mac, and it passes his verification step. He believes is came from Alice!
- See Project 3, resources on that page


Figure 3.4 Message Digest Generation Using SHA-1

## Message Extension Attack

- Extend the message by adding block $Y_{L+1}$
- If this block is now put through the Hsha function, along with the output of the previous Hsha calculation, what do you get?

