CS 465 Computer Security

MAC: Message Authentication Code

Daniel Zappala, adapted from Kent Seamons Fall 2019

What Assurances are Provided by Symmetric Encryption?

Assume CTR or CBC mode

- Authentication?
- Confidentiality?
- Integrity?
- Non-repudiation?

Bit Flipping Attacks (Block Cipher)

Modification attacks on CBC

Modification attack on CBC

Bit Flipping Attacks (Stream Cipher)

- Plaintext:
 - ACCT_NO:123-45-6789 ADD:100
- Ciphertext:
 - 15b1206b7efa68b9
 89 c87357507e3a27a138ca dc b2a1bb
 f8 eebee5

Goals of Message Authentication

Assure that the message has not been altered

Assure the source of the message is authentic

Message Authentication: Ciphertext vs. Plaintext

- Authentication of encrypted messages
 - Include an error-detection code in plaintext message
 - Attach a key-based error-detection code to an encrypted message
 - Attach a TAG remember the newer AEAD modes
- Authentication of plaintext messages
 - Authentication without confidentiality
 - Attach a key-based error-detection code to plaintext message

Message Authentication Code (MAC)

Dear BYU, Thank you so much for an

awesome computer security course.

> Sincerely, Emma

MAC Algorithm

This message really is from me and hasn't been modified

Message Authentication Code (MAC)

Source: Network Security Essentials (Stallings)

Three Ways to Implement a MAC

1. CBC-MAC

- Use CBC mode and a block cipher — fixed length messages only
- OMAC for variable length messages

OMAC1 (also called CMAC)

(a) Message length is integer multiple of block size

(b) Message length is not integer multiple of block size

Figure 12.12 Cipher-Based Message Authentication Code (CMAC)

Three Ways to Implement a MAC

2. Hash the message and encrypt the digest

(a) Using conventional encryption

Three Ways to Implement a MAC

3. Hash the message along with a shared key

(c) Using secret value

Source: Network Security Essentials (Stallings)

Design Flaw!

- Cryptographers recommend against this kind of MAC using modern hash functions
- Vulnerable to a message extension attack

- Vulnerability comes from an interactive implementation technique knows as the Merkle-Damgård construction
- Hash functions that are vulnerable when used this way: MD5, SHA1, SHA2

- Because of the message extension attack vulnerability, the <u>government standard HMAC</u> algorithm guards against this threat
 - FIPS 198
 - RFC 2104

$\operatorname{HMAC}(K,m) = H\Big((K' \oplus opad) \| H\big((K' \oplus ipad) \| m\Big)\Big)$

- K' = H(K) if K is larger than the block size, otherwise K
- opad = 0x5c5c5c...5c5c, one-block-long constant
- ipad = 0x363636...3636, one-block-long constant
- IV is fixed, as with SHA-2 and other hash functions

HMAC = Hashed MAC

- Wrong way: H(secret||m)
- Right way : H((K' ⊕ opad) || H((K' ⊕ ipad) || m))

Recommendation

- If you need just a MAC, use HMAC
- If you need encryption and a MAC, use AEAD
- See <u>https://blog.cryptographyengineering.com/</u> 2013/02/15/why-i-hate-cbc-mac/

MAC ATTACK

Let's examine the message extension attack...

- Alice and Bob share a key K
- Alice sends message M1 to Bob such that Bob knows it came from Alice
 - Alice computes $H(K \parallel M1) = mac1$
 - Alice sends M1 and mac1 to Bob
- Bob verifies the message
 - Bob computes H(K || M1) = mac2 and compares it to mac1. If they match, the message came from Alice.
 - Or did it????

Message Extension Attack

- Mallory can intercept a plaintext message and a mac.
- Mallory "extends" the message adds new material to the end of the message
- She modifies the mac without knowing the key. She needs to know the length of the key.
- She replaces the message and mac with the extended message and new mac
 and forwards it along
- Bob receives the modified message and mac, and it passes his verification step. He believes is came from Alice!
- See Project 3, resources on that page

Figure 3.4 Message Digest Generation Using SHA-1

Message Extension Attack

- Extend the message by adding block Y_{L+1}
- If this block is now put through the H_{SHA} function, along with the output of the previous H_{SHA} calculation, what do you get?