
TLS as an Operating System Service

Daniel Zappala

from Mark O’Neill’s PhD Dissertation and USENIX Security papers

Part 1
TrustBase

Simplified and Centralized Certificate Validation

certificate	validation	
problems

certificate authorities (CAs)

• generally can sign certificates for any host
(Eckersley et al.)

• have been hacked, sometimes repeatedly (Marlinspike)

• can be influenced and operated by governments
(Soghoian et al.)

• don’t always follow best practices (see CNNIC)

for application developers

• mobile and desktop apps have validation problems

• Brubaker et al., Georgiev et al., Onwuzurike et al., Fahl et al.

• security libraries are complicated

• security may not be a priority

• security may be a hassle

threat model

client
Bad	guys,	Inc.

alternate and reinforcing strategies

• deal with many of these issues

• have no common platform or API

• have difficulty being adopted openssl
firefox

chrome

trust	decisions	are	outsourced

how	do	we	enable	admins	to	
control	the	trust	decisions	of	

their	own	machines?

TrustBase

• motivating principles

• centralize authentication as an OS service

• empower system admins to dictate how trust decisions are made on their own machines

• design goals

• secure all existing applications

• prohibit unprivileged applications from acting against administrator rules

• provide easy deployment of authentication systems

• negligible overhead

API

TrustBase

Transport

Network…
…

Application

Validation

Plugins

Prototypes	for	
• Linux	
• Android	(nonrooted)	
• Windows

moving trust to the OS

TrustBase architecture

TrustBase architecture

traffic interception (Linux)

So
ck
et
	A
PI

TC
P	
H
an
dl
in
g

connect

write	
send	

sendmsg	
sendmmsg

read	
recv	

recvmsg	
recvmmsg

close	
shutdown

Handler	API

• loadable kernel module

• hooks into native
transport protocol
functionality

• provides generic
inspection/modification
API

TrustBase architecture

TLS handler

1. monitor traffic for TLS records

2. record handshake messages

3. query policy engine with handshake data

4. receive policy response

1. block connection if invalid

2. allow if valid

TrustBase architecture

policy engine

• receives queries via Netlink

• implements basic CA validation

• aggregates decisions from plugins
• necessary
• voting

• provides native API
• Linux capabilities

TrustBase architecture

plugins

• API allows synchronous and asynchronous plugins
• openssl STACK_OF(X509) or ASN.1 DER

• can report back yes/no/abstain/error for each chain

• have access to all handshake info (and more)

addons

• provide additional language support for plugins

• currently have native C and python addons

• API to add additional language support

example plugins and uses

• CA Validation (builtin)

• Certificate Pinning

• OSCP checking

• CRLSet blocking

• DANE

• Notary

• Cipher Suite Auditor

evaluation

centralization and coverage

• bugs are global

• disruption is a DOS

• updates are global

• many eyeballs

• in line with other services

hardening

• unprivileged malware cannot unload interception

• CAP_NET_RAW is required to use raw sockets (default) and
to bypass TrustBase interception

• CAP_NET_ADMIN required to receive and respond to queries

• configuration is writable only by privileged users

• daemons run nonroot with only required permissions

performance

performance

trustbase	lets	you	trust	
who	you	want	
how	you	want

Part 2
Secure Socket API

Simplified and Centralized TLS API

your	apps	are	vulnerable

�30

Application Errors

We demonstrate that SSL certificate validation is completely broken
in many security-critical applications and libraries. Vulnerable software
includes Amazon’s EC2 Java library and all cloud clients based on it;
Amazon’s and PayPal’s merchant SDKs responsible for transmitting payment
details from e-commerce sites to payment gateways; integrated shopping
carts such as osCommerce, ZenCart, Ubercart, and PrestaShop; AdMob
code used by mobile websites; Chase mobile banking and several other
Android apps and libraries; Java Web-services middleware—including
Apache Axis, Axis 2, Codehaus XFire, and Pusher library for Android—and all
applications employing this middleware. Any SSL connection from any of
these programs is insecure against a man-in-the-middle attack.
Georgiev, Martin, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. "The most dangerous code in the world: validating SSL
certificates in non-browser software." In Proceedings of the 2012 ACM conference on Computer and communications security, pp. 38-49. ACM, 2012.

�32

“The	root	cause	of	most	of	these	
vulnerabilities	is	the	terrible	
design	of	the	APIs	to	the	
underlying	SSL	libraries”

--The	most	dangerous	code	in	the	world:	validating	SSL	certificates	
in	non-browser	software.	Martin	Georgiev	et	al.,	2012.	ACM	CCS.

using TLS is hard

SSL_CTX_set_cert_verify_callback()

SSL_CTX_set_
verify()

X509_
verif

y_cer
t()

Symbols in libssl: 504

�34

  

326 lines

 

317	
Lines

can	we	do	better?

�35

can	we	use	the	POSIX	socket	API?

�36

�37

int socket = socket(PF_INET, SOCK_STREAM,
IPPROTO_TCP);

can	we	use	the	POSIX	socket	API?

�38

int socket = socket(PF_INET, SOCK_STREAM,
IPPROTO_TLS);

can	we	use	the	POSIX	socket	API?

the	Secure	Socket	API	(SSA)

�39

the Secure Socket API (SSA)

connect

send/sendto/
etc.
recv/recvfrom/
etc.

TLS	close	notifyclose

decrypt	and	read

encrypt	and	send

TLS	handshake

TLS via the POSIX socket API

Security	Library

Network	Application

Network	Subsystem

UDPTCP Raw

POSIX	Socket	API

Internet

Network	Application

Network	Subsystem

UDPTCP Raw

Internet

TLS

Ke
rn
el
sp
ac
e

U
se
rs
pa
ce

Ke
rn
el
sp
ac
e

U
se
rs
pa
ce

POSIX	Socket	API

Userspace Encryption Daemon

Network	Subsystem

Ke
rn
el
sp
ac
e

U
se
rs
pa
ce

Security	Library

Encryption	Daemon

Admin	Config

Internet

UDPTCP Raw TLS

POSIX	Socket	API

Network	Application

TLS API reduction

Secure	Socket	API

socket

bind

listen

connect

setsockopt

getsockopt

close

recv/recvfrom/recvmsg

send/sendto/sendmsg

getaddrinfo

14

Symbol	Count

504

OpenSSL

SSL_CTX_new

SSL_CTX_set_verify

SSL_new

SSL_set_fd

TLS_method

SSL_exts_set_hostname

SSL_do_handshake

SSL_set_verify_callback

SSL_get_peer_certificate

And	495	more…

�44

reconnaissance

Features Symbols

version	selection 29

cipher	suite	selection 39

extension	management 68

certificate/key	management 73

certificate/key	validation 51

session	management 61

configuration 19

allocation 33

connection	management 41

miscellaneous 64

instrumentation 26

analyzed	410	
Ubuntu	packages	
that	depended	on	
libssl	

used	developer	
behavior	to	guide	
our	design

developer options

setsockopt

getsockopt

developer options

...
fd = socket (PF_INET, SOCK_STREAM, IPPROTO_TLS);
/* Bind to local address and port */
bind (fd, &addr, sizeof(addr));
/* Assign certificate chain */
setsockopt(fd, IPPROTO_TLS, TLS_CERTIFICATE_CHAIN,
CERT_FILE, sizeof(CERT_FILE));
/* Assign private key */
setsockopt(fd, IPPROTO_TLS, TLS_PRIVATE_KEY,
KEY_FILE, sizeof(KEY_FILE));
...

developer options

Option

TLS_REMOTE_HOSTNAME

TLS_HOSTNAME

TLS_TRUSTED_PEER_CERTIFICATES

TLS_CERTIFICATE_CHAIN

TLS_PRIVATE_KEY	

TLS_ALPN

TLS_SESSION_TTL

TLS_DISABLE_CIPHER

TLS_PEER_IDENTITY

TLS_PEER_CERTIFICATE_CHAIN

setsockopt

getsockopt

administrator options

Option Description

TLS	Version Enabled	TLS	versions,	in	order	of	preference

Cipher	Suites Allowed	cipher	suites,	in	order	of	preference

Certificate	
Validation

Specified	root	store	for	certificate	validation,	or	
custom	validation	engine	like	TrustBase

Enabled	
Extensions

Specified	TLS	extensions	to	use	(e.g.,	ALPN)

Session	Caching Specified	session	cache	parameters

Default	cert/key	
paths

Specify	location	of	certificates	and	keys	to	use	
when	application	does	not	specify

• global	
configuration	
file	assigns	TLS	
defaults	

• per-application	
profiles	can	
further	
customize	
settings

certificate validation

• admin’s choice
• standard validation
• TrustBase

• TrustBase is an OS service
that validates certificates
according to admin config

• can enable multiple services
(OSCP, CRLsets, custom
root stores, Convergence,
etc.)

API

SSA Validation

Plugins

TrustBase

using the SSA

Application
LOC	

Modified
LOC	

Removed
Familiar	with	

Code?
Time	Taken

Already	using	TLS

wget 15 1,020 No 5	Hrs.

lighttpd 8 2,063 No 5	Hrs.

Not	using	TLS

in-house	webserver 5 0 Yes 5	Min.

netcat 5 0 No 10	Min.

language support

Network	System	Calls

libc

JVM

native	languages

cpython

go

Secure	Socket	API

network

• any language that uses the network
uses network system calls (directly or
indirectly)

• the SSA is implemented behind the
system call layer

• adding SSA support to a language is
trivial

• Go:	<	50	lines	of	code	(syscall	wrappers)

• Python:	new	constants	only

• PHP:	new	constants	only

• C/C++:	new	constants	only

performance vs OpenSSL

• no discernable
time overhead for
0 – 100
concurrent TLS-
using processes

broadening coverage

OpenSSL	
Emulator

OpenSSL	
Application

Secure	Socket	
API

OpenSSL

Linker	Override

dynamically	ported	ncat,	wget,	lighttpd,	irssi

outcomes

• general benefits
• TLS through a known API
• admin control of TLS settings

• implementation benefits
• easy language support
• natural privilege separation
• alternative implementations supported

the	Secure	Socket	API:	
enabling	developers	to	secure	connections	

using	a	known	API	
in	ways	you	can	control

�56

Papers

• Mark O'Neill, Scott Heidbrink, Scott Ruoti, Jordan Whitehead, Dan
Bunker, Luke Dickinson, Travis Hendershot, Joshua Reynolds, Kent
Seamons, and Daniel Zappala, TrustBase: An Architecture to Repair and
Strengthen Certificate-based Authentication, USENIX Security, August
2017.

• Mark O'Neill, Scott Heidbrink, Jordan Whitehead, Tanner Perdue, Luke
Dickinson, Torstein Collett, Nick Bonner, Kent Seamons, and Daniel
Zappala, The Secure Socket API: TLS as an Operating System Service,
USENIX Security, August 2018.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/oneill
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/oneill
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/oneill
https://www.usenix.org/conference/usenixsecurity18/presentation/oneill

Source Code

• source code: https://github.com/markoneill/trustbase-linux,
https://github.com/markoneill/trustbase-windows

• kernel module: https://github.com/markoneill/ssa

• encryption daemon: https://github.com/markoneill/ssa-daemon

• pull requests welcome!

• project website: https://owntrust.org

• contact Mark: mto@byu.edu

• thanks to our sponsors

https://github.com/markoneill/trustbase-linux
https://github.com/markoneill/trustbase-linux
https://github.com/markoneill/trustbase-linux
https://github.com/markoneill/trustbase-windows
https://github.com/markoneill/ssa
https://github.com/markoneill/ssa-daemon
https://github.com/markoneill/ssa-daemon
https://owntrust.org/
mailto:mto@byu.edu

Next Steps

• Major tech transfer effort

• Libraries for various languages and OSes that will

• check for kernel support and use that if available

• check for an encryption daemon running and connect directly if available

• worst case, do all the OpenSSL work needed for a secure connection

• Either way, developers use a simple POSIX API, and we try
to use centralized policy/control where available

