CS 465
Computer Security

TLS

Daniel Zappala, adapted from Kent Seamons
Fall 2018

Goals

- Understand the TLS handshake

- Understand client/server authentication in TLS
o RSA key exchange
 DHE key exchange
e Explain certificate ownership proofs in detalil

o What cryptographic primitives are used and why?

- Understand session resumption

- Understand the limitations of TLS

Genesis of TLS

SSLv1 (1994) SSLv2 (1994)
Netscape " Netscape
unreleased First release
PCT (1995)
Microsoft

SSLv3 (1995)
Netscape

|

STLP (1996)
Microsoft

TLS 1.0 (1997-1999)

" |ETF (aka SSLv3.1)

|

WTLS (1998)
WAP Forum

— TLS1.1(2006) —> TLS 1.2 (2008) — TLS 1.3 (2018)

Source: SSL and TLS, Rescorla

SSL Record Protocol Operation

Application Data

Fragment

I

N
Add MAC V///{/%@

Figure 7.3 SSL Record Protocol Operation

Source: Network Security and Essentials (Stallings)

SSL Record Format

encrypted

Content | Major | Minor | Compressed
Type | Version | Version Length
Plaintext
(optionally
compressed)

MAC (0, 16, or 20 bytes)

Figure 74 SSL Record Format

Source: Network Security and Essentials (Stallings)

RSA Client Server

Key Client Hello [Random_client, Cipher Suites *, SessionID]

EXChange ‘ Server Hello [Random_server, Cipher Suites +, Session|D]
Method

Server Certificate chain of X.509 Certs

Server Hello Done

Client Key Exchange [Pre-master secret
encrypted with server public key]

Change Cipher Spec

Finished [Encrypted + HMAC]

Change Cipher Spec

Finished [Encrypted + HMAC]

DHE Client Server

Key
Exchange
Method

Client Hello [Random_client, Cipher Suites *, SessionID]

Server Hello [Random_server, Cipher Suites +, SessionID]

Server Certificate [chain of X.509 Certs]

Server Key Exchange [signed DH info]
Random_client, Random_server, g, p, server DH param

Server Hello Done

Client Key Exchange [client DH public param]

Change Cipher Spec

Finished [Encrypted + HMAC]

Change Cipher Spec

Finished [Encrypted + HMAC]

Cipher Suite

- a set of algorithms (over 300 combinations supported)

- typically includes
key exchange algorithnm (e.g. RSA, Diffie-Hellman)
bulk encryption algorithm (confidentiality, includes block cipher mode)
MAC algorithm (integrity)

+ examples

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA WITH_AES_128_GCM_SHA256

Cipher Suite

+ TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS protocol
DHE — Diffie-Hellman key exchange
RSA — authentication key — most commonly used

AES_128 GCM — symmetric, bulk encryption with 128 bit key, GCM
mode

SHA256 — MAC algorithm

Cipher Suite

- Must choose a safe cipher suite
Anonymous Diffie-Hellman (ADH) suites do not provide authentication
NULL cipher suites provide no encryption

Export cipher suites (limited to small key sizes that NSA can break) are insecure when
negotiated in a connection, but they can also be used against a server that prefers stronger
suites (the FREAK attack)

Suites with weak ciphers (typically of 40 and 56 bits) use encryption that can easily be broken
RC4 is insecure

3DES is slow and weak

https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

Cipher Suite

- An example configuration (order indicates preference)
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

- Elliptic curve variations

ECDHE — Elliptic Curve Diffie-Hellman Ephemeral, key exchange algorithm — smaller keys for
same security (elliptic curve cryptography) + ephemeral keys (forward secrecy)

ECDSA — Elliptic Curve Digital Signature algorithm, authentication algorithm — faster than RSA

Deriving the Master Secret and Keys

- generate a pre-master secret
- arandom number

it is REALLY HARD to generate a random number properly
- exchange the master secret, e.g. using RSA and padding

- derive the master secret using pre-master secret, the string
“master secret”, and the client and server random values

- generate keys using master secret (IV for each direction,
symmetric key for each direction, MAC key for each direction)

Certificate Chain

- X.509 Certificates

standard format for digital certificates

- Chain

set of certificates that are signed, from server cert to intermediate certs
{0 root cert

all the information needed to verify the server certificate

see prior lecture on Certificates

Finished

+ The Finished message is the first one that is encrypted
using the master secret

+ The Finished message also includes an HMAC of part of
the previously exchanged messages to ensure nobody
tampered with the handshake

Session Resumption

- Ina TLS connection, the SessionlD can be null, indicating a new connection

- A non-null SessionlD means the client would like to resume a prior session
avoid full handshake (e.g. avoid expensive public key crypto operations and extra round trips)

this gets complex if the server is distributed across multiple machines, see for example https://
blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/

session resumption also messes with forward secrecy, see for example https://blog.compass-
security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/

- Can use session tickets instead (see RFC 5077)

these are also problematic, see for example https://blog.filippo.io/we-need-to-talk-about-
session-tickets/

https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.filippo.io/we-need-to-talk-about-session-tickets/
https://blog.filippo.io/we-need-to-talk-about-session-tickets/

RSA Client
Key

Exchange
Method

Client Authentication

Server

Client Hello [Random_client, Cipher Suites *, SessionlD]

Server Hello [Random_server, Cipher Suites +, SessionID]

Server Certificate chain of X.509 Certs

Client Certificate Request

Server Hello Done

Ceriificate

Client Key Exchange [Pre-master secret
encrypted with server public key]

Cerlificate Verify

Change Cipher Spec

Finished [Encrypted + HMAC]

Change Cipher Spec

Finished [Encrypted + HMAC]

Client Authentication

- server must request it

- a person must purchase a certificate
most people have no idea what a cert is
usually involves manual verification of identity (if cert is tied to some personal identifier)
expensive and time-consuming relative to Let’s Encrypt

must protect private key

- a person must configure their browser to use the certificate and select it when
prompted by the browser

those interfaces are not pretty

Perfect Forward Secrecy

- In vanilla RSA, the premaster secret is encrypted with the server’s
public key

e |f the server’s private key is compromised all past and future sessions are also
compromised

o Majority of TLS uses vanilla RSA

- Using an ephemeral key

o Even if the server’s private key is later compromised, past sessions cannot be
decrypted, even if captured and stored by a third party

e Ephemeral Diffie-Hellman (DHE-RSA), Elliptic curve variation is faster (ECDHE)

TLS 1.3

* Improvements

Reduced round trips in the handshake

Certificates are encrypted WHAT WAS THAT RUBBISH YOU

_\WERE SELLING ME LAST WEEK?

Quick session resumption

Signature covers the entire handshake

e Resources

e https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/

https://blog.cloudflare.com/tls-1-3-overview-and-g-and-a/

https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/

TLS 1.2 (Simplified)

Client Server

Client Hello

Server Hello

Supported cipher suites

Chosen cipher suite

Key share
Certificate & signature

Key share

Finished

el
L awer

< HTTP Answer

TLS 1.3 (Simplified)

Client

Client Hello

Supported cipher suites
Key share

Finished

HTTP GET

Server

Server Hello

Chosen cipher suite
Key share

Certificate & signature

Finished

TLS 1.2 Resumption

Client Server

Client Hello
Session ID / Ticket

Server Hello
Finished

Finished

HTTP GET

& CLOUDFLARE 10

TLS 1.3 Resumption (0-RTT)

Client

Client Hello
Session Ticket (PSK)

Key share

HTTP GET

Server

Server Hello

Key share

Finished

HTTP Answer

TLS 1.3 Resumption (0-RTT)

- Beware

O-RTT data is not forward secret — if an attacker gets a session ticket key at some
point, they can decrypt this data

- servers need to rotate session ticket keys frequently
- still an improvement over TLS 1.2 session tickets
- subject to replay attacks

- The solution is that servers must not execute operations that are not idempotent
received in O-RTT data.

- E.g. Iimit O-RTT datatoaan HTTP GET

Review Questions

How many shared keys are derived between a client and a server that establish a TLS session?

How does the server prove ownership of its private key?

How does the client prove ownership of its private key when client authentication is (rarely)
used”?

What is the pre-master secret?
 Who creates it?
* How is it securely transmitted?
What is session resumption?

* How does it differ from a regular SSL handshake?

When do the client and server start encrypting traffic using symmetric encryption?

Review Questions

How many shared keys are derived between a client and a server that establish a TLS session?
e Each side generates 4-6 keys

How does the server prove ownership of its private key?
* Implicitly by decrypting the pre-master secret and finishing handshake

How does the client prove ownership of its private key when client authentication is (rarely) used?
e Send digital signature to the server

What is the pre-master secret?
* Who creates it?
e How is it securely transmitted?

What is session resumption?
e How does it differ from a regular SSL handshake?

When do the client and server start encrypting traffic using symmetric encryption?

e Finished message

