
CS 465
Computer Security

TLS

Last Updated: Oct 31, 2017Daniel Zappala, adapted from Kent Seamons
Fall 2018

Goals

• Understand the TLS handshake

• Understand client/server authentication in TLS

• RSA key exchange

• DHE key exchange

• Explain certificate ownership proofs in detail

• What cryptographic primitives are used and why?

• Understand session resumption

• Understand the limitations of TLS

Genesis of TLS

SSLv1 (1994)
Netscape 

unreleased

SSLv2 (1994) 
Netscape 

First release

STLP (1996) 
Microsoft

PCT (1995) 
Microsoft

SSLv3 (1995) 
Netscape 

TLS 1.0 (1997-1999) 
IETF (aka SSLv3.1)

WTLS (1998) 
WAP Forum

Source: SSL and TLS, Rescorla

TLS 1.1 (2006) TLS 1.2 (2008) TLS 1.3 (2018)

SSL Record Protocol Operation

Source: Network Security and Essentials (Stallings)

SSL Record Format

Source: Network Security and Essentials (Stallings)

Client Hello [Random_client, Cipher Suites *, SessionID]

Server Hello [Random_server, Cipher Suites +, SessionID]

Server Certificate chain of X.509 Certs

Server Hello Done

Client Key Exchange [Pre-master secret  
 encrypted with server public key]

Change Cipher Spec

Change Cipher Spec

Finished [Encrypted + HMAC]

Finished [Encrypted + HMAC]

Client ServerRSA
Key
Exchange
Method

Client Hello [Random_client, Cipher Suites *, SessionID]

Server Hello [Random_server, Cipher Suites +, SessionID]

Server Certificate [chain of X.509 Certs]

Server Hello Done

Client Key Exchange [client DH public param]

Change Cipher Spec

Change Cipher Spec

Finished [Encrypted + HMAC]

Finished [Encrypted + HMAC]

Client Server

Server Key Exchange [signed DH info]
Random_client, Random_server, g, p, server DH param

DHE
Key
Exchange
Method

Cipher Suite

• a set of algorithms (over 300 combinations supported)

• typically includes

• key exchange algorithm (e.g. RSA, Diffie-Hellman)

• bulk encryption algorithm (confidentiality, includes block cipher mode)

• MAC algorithm (integrity)

• examples

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

Cipher Suite

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

• TLS protocol

• DHE — Diffie-Hellman key exchange

• RSA — authentication key — most commonly used

• AES_128_GCM — symmetric, bulk encryption with 128 bit key, GCM
mode

• SHA256 — MAC algorithm

Cipher Suite

• Must choose a safe cipher suite

• Anonymous Diffie-Hellman (ADH) suites do not provide authentication

• NULL cipher suites provide no encryption

• Export cipher suites (limited to small key sizes that NSA can break) are insecure when
negotiated in a connection, but they can also be used against a server that prefers stronger
suites (the FREAK attack)

• Suites with weak ciphers (typically of 40 and 56 bits) use encryption that can easily be broken

• RC4 is insecure

• 3DES is slow and weak 

https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

Cipher Suite

• An example configuration (order indicates preference)

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

• Elliptic curve variations

• ECDHE — Elliptic Curve Diffie-Hellman Ephemeral, key exchange algorithm — smaller keys for
same security (elliptic curve cryptography) + ephemeral keys (forward secrecy)

• ECDSA — Elliptic Curve Digital Signature algorithm, authentication algorithm — faster than RSA

Deriving the Master Secret and Keys

• generate a pre-master secret

• a random number

• it is REALLY HARD to generate a random number properly

• exchange the master secret, e.g. using RSA and padding

• derive the master secret using pre-master secret, the string
“master secret”, and the client and server random values

• generate keys using master secret (IV for each direction,
symmetric key for each direction, MAC key for each direction)

Certificate Chain

• X.509 Certificates

• standard format for digital certificates

• Chain

• set of certificates that are signed, from server cert to intermediate certs
to root cert

• all the information needed to verify the server certificate

• see prior lecture on Certificates

Finished

• The Finished message is the first one that is encrypted
using the master secret

• The Finished message also includes an HMAC of part of
the previously exchanged messages to ensure nobody
tampered with the handshake

Session Resumption

• In a TLS connection, the SessionID can be null, indicating a new connection

• A non-null SessionID means the client would like to resume a prior session

• avoid full handshake (e.g. avoid expensive public key crypto operations and extra round trips)

• this gets complex if the server is distributed across multiple machines, see for example https://
blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/

• session resumption also messes with forward secrecy, see for example https://blog.compass-
security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/

• Can use session tickets instead (see RFC 5077)

• these are also problematic, see for example https://blog.filippo.io/we-need-to-talk-about-
session-tickets/

https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.compass-security.com/2017/06/about-tls-perfect-forward-secrecy-and-session-resumption/
https://blog.filippo.io/we-need-to-talk-about-session-tickets/
https://blog.filippo.io/we-need-to-talk-about-session-tickets/

Client Hello [Random_client, Cipher Suites *, SessionID]

Server Hello [Random_server, Cipher Suites +, SessionID]

Server Certificate chain of X.509 Certs

Server Hello Done

Client Key Exchange [Pre-master secret  
 encrypted with server public key]

Change Cipher Spec

Change Cipher Spec

Finished [Encrypted + HMAC]

Finished [Encrypted + HMAC]

Client ServerRSA
Key
Exchange
Method

Certificate

Certificate Verify

Client Authentication
Client Certificate Request

Client Authentication

• server must request it

• a person must purchase a certificate

• most people have no idea what a cert is

• usually involves manual verification of identity (if cert is tied to some personal identifier)

• expensive and time-consuming relative to Let’s Encrypt

• must protect private key

• a person must configure their browser to use the certificate and select it when
prompted by the browser

• those interfaces are not pretty

Perfect Forward Secrecy

• In vanilla RSA, the premaster secret is encrypted with the server’s
public key

• If the server’s private key is compromised all past and future sessions are also
compromised

• Majority of TLS uses vanilla RSA

• Using an ephemeral key

• Even if the server’s private key is later compromised, past sessions cannot be
decrypted, even if captured and stored by a third party

• Ephemeral Diffie-Hellman (DHE-RSA), Elliptic curve variation is faster (ECDHE)

TLS 1.3

• Improvements

• Reduced round trips in the handshake

• Certificates are encrypted

• Quick session resumption

• Signature covers the entire handshake

• Resources

• https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/

• https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/

https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/

TLS 1.2 (Simplified)

TLS 1.3 (Simplified)

TLS 1.2 Resumption

TLS 1.3 Resumption (0-RTT)

TLS 1.3 Resumption (0-RTT)

• Beware

• 0-RTT data is not forward secret — if an attacker gets a session ticket key at some
point, they can decrypt this data

• servers need to rotate session ticket keys frequently

• still an improvement over TLS 1.2 session tickets

• subject to replay attacks

• The solution is that servers must not execute operations that are not idempotent
received in 0-RTT data.

• E.g. limit 0-RTT data to a an HTTP GET

Review Questions

• How many shared keys are derived between a client and a server that establish a TLS session?

• How does the server prove ownership of its private key?

• How does the client prove ownership of its private key when client authentication is (rarely)
used?

• What is the pre-master secret?

• Who creates it?

• How is it securely transmitted?

• What is session resumption?

• How does it differ from a regular SSL handshake?

• When do the client and server start encrypting traffic using symmetric encryption?

Review Questions

• How many shared keys are derived between a client and a server that establish a TLS session?

• Each side generates 4-6 keys

• How does the server prove ownership of its private key?

• Implicitly by decrypting the pre-master secret and finishing handshake

• How does the client prove ownership of its private key when client authentication is (rarely) used?

• Send digital signature to the server

• What is the pre-master secret?

• Who creates it?

• How is it securely transmitted?

• What is session resumption?

• How does it differ from a regular SSL handshake?

• When do the client and server start encrypting traffic using symmetric encryption?

• Finished message

