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Recap

• Number theory 

• What is a prime number? 

• What is prime factorization? 

• What is a GCD? 

• What does relatively prime mean? What does co-prime mean? 

• What does congruence mean? 

• What is the additive inverse of 13 % 17 ? 

• What is the multiplicative inverse of 7 % 8 ?



Recap: Diffie-Hellman

• You’re trapped in your spaceship 

• You have enough energy to send a single 
message to your HQ 

• You have: 

• HQ’s public DH values 

• g=5, p = 875498279345… 

	 ga = 32477230478… 

• Your AES implementation from Labs #1 & 2 

• An arbitrary precision calculator 

• How can you construct your message so that 
it will be safe from eavesdroppers?



Public Key Encryption



Public Key Terminology

• Public Key 

• Private Key 

• Digital Signature 

• You encrypt with a public key, and you decrypt with a 
private key 

• You sign with a private key, and you verify with a public 
key



Public Key Encryption Model
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History of RSA

• Invented in 1977 by Ron Rivest, Adi Shamir, Leonard Adleman 

• Patented until 2000 

• It’s withstood years of extensive cryptanalysis  

• Suggests a level of confidence in the algorithm 

• Example of successful attacks against implementations 

• Side channel attacks 

• Poor random number generators



Textbook RSA

• m = message 
• c = ciphertext 
• e = public exponent 
• d = private exponent 
• n = modulus 

• RSA Encryption:     c = me % n 

• RSA Decryption:     m = cd % n



Why Public Key Encryption Works



The Math Behind RSA

• RSA encrypt/decrypt operations are simple 

• The math to get to the point where these operations work 
is not so simple (at first) 

• Fermat’s little theorem 

• Euler’s generalization of Fermat’s little theorem



Fermat’s Little Theorem

• If 

• p is prime 

• a is not divisible by p 

• Then Fermat’s theorem states 

• ap-1 ≡ 1 (mod p) 

• This serves as the basis for 

• Fermat’s primality test 

• Euler’s generalization

Pierre de Fermat 
(1601-1655)



Euler’s Generalization of  
Fermat’s Little Theorem

• Euler said 

• aϕ(n) ≡ 1 (mod n) 

• ϕ(n) 

• Euler’s totient function 

• The number of values less than n which are relatively prime to n 

• Multiplicative group of integers (Zn*) 

• RSA is interested in values of n that are the product of two large prime 
numbers p and q

Leonhard Euler 
(1707-1783)

n doesn’t need to be prime 
a must still be co-prime to n



Computing ϕ(n) in RSA

• When p * q = n, and p and q are prime, what is ϕ(n)?   

• ϕ(n) = the number of integers between 0 and n that are co-prime to n 

• Proof (When p * q = n) 

• Observations 
	 1) there are p-1 multiples of q between 1 and n 
	 2) there are q-1 multiples of p between 1 and n 
	 These multiples are not co-prime to n 
 
Definition: 
	 ϕ(n) = # of values between 0 and n minus  
	 	   # of values between 0 and n not relatively prime to n 

ϕ(n) = [ n – 1] – [(p-1) + (q-1)] 
       = [pq – 1] –  (p-1) – (q-1)) 
       =  pq – p – q + 1            
     = (p-1)(q-1)

(p-1)(q-1)

Why not?



RSA

• Euler said: aϕ(n) ≡ 1 (mod n) 

• m(p-1)(q-1) ≡ 1 (mod n) 

• Notice: m(p-1)(q-1) * m ≡ m(p-1)(q-1)+1 ≡ m (mod n) 

• mϕ(n)+1 ≡ m (mod n) 

• Let e*d = k*ϕ(n) + 1 

• Then e*d ≡ 1 (mod ϕ(n)) 

• Therefore med ≡ mk*ϕ(n)+1 ≡ mϕ(n) *mϕ(n) *… * m ≡ m (mod n) 

• RSA encryption: me = c (mod n) 

• RSA decryption: cd = m (mod n)

Why is RSA secure? 

If you could factor n into p and q, then 
you know ϕ(n)=(p-1)(q-1), and now you 
can easily calculate d (e is public). 

This is called the “trap door” in RSA. 
Knowing the prime factors is what 
makes it easy to decrypt. 

It’s hard to factor large primes and hard 
to find d without knowing the 
factorization.



How To Use Public Key Encryption



Steps for RSA Encryption

• Select p, q (large prime numbers) 

• n=p*q 

• ϕ(n) = (p-1)(q-1) 

• Select integer e where e is relatively prime to ϕ(n) 

• Common values for e are 3 and 65537. Why? 

• Calculate d, where d*e = 1 (mod ϕ(n)) 

• Public key is KU = {e, n} 

• Private key is KR = {d, n}



RSA Usage

• Given me = c (mod n) and cd = m (mod n) 

• What restrictions should be placed on m? 

• For bulk encryption (files, emails, web pages, etc) 

• Never, never, never encrypt data directly using RSA — inefficient and insecure 

• Always use symmetric encryption for data, and use RSA to encrypt the symmetric key, using 
a secure padding scheme 

• Digital signatures 

• Do not sign the entire document — too slow 

• Sign (encrypt) a hash of the document using the private key



How To Calculate RSA Values 



How do we get p, q, e, and d?

• What is p? 

• How do we get it? 

• What is q? 

• How do we get it? 

• What is e? 

• How do we get it? 

• What is the relationship of e and (p-1)(q-1)? 

• What is d? 

• How do we get it?



Calculating d

• Goal: find d such that ed = 1 (mod ϕ(n))

• Use the extended Euclidean algorithm 

• Calculates x and y such that ax+by=gcd(a,b) 

• Let a=e, b=ϕ(n). gcd(e,ϕ(n))=1 because they are co-prime 

• Then you have: ex+ϕ(n)y=1 

• Take this modulo ϕ(n) and you get: ex≡1 (mod ϕ(n)) 

• x=d    (if x is negative, simply add ϕ(n))



Extended Euclidean Algorithm

• Let p = 5, q = 11, n = 55, 
e=17, and ϕ(n)=40 

• 17d+40k=1 

• 40=2×17+6     GCD with remainder          

• 17=2×6+5       GCD with remainder 

• 6=1×5+1       (stop at remainder 1) 

• Rewrite 

• 6−1×5=1

• Substitute 

• 6−1×5=1  

• 6−1×(17−2×6)=1 

• (40−2×17)−1×(17−2×(40−2×17))=1 

• Simplify 

• (−7)×17+3×40=1 

• d=−7 -> add 40 (the modulus) and get d 
= 33 

• Public key = {17,55} 

• Private key = {33,55}



Practice

p=5, q=11, e=3



Practice

p=5, q=11, e=3  

n = p*q = 55 
ϕ(n) = (p-1)(q-1) = 4*10 = 40  

 

Calculate d  

3*d + 40*k = 1 
40 = 13*3 + 1            (no substitution steps needed) 
(-13)*3 + 40 = 1 
d = -13 + 40 = 27  

 

Public Key = {3, 55} 
Private Key = {27, 55}



An Exception!



GCD(e, ϕ(n)) must be 1

• Be sure to check, otherwise you need a new e 

• Easy algorithm: 

• GCD(x, y) = GCD(y, x %y)   if x > y     (recursive computation) 

• Example 

• GCD(40, 3) = GCD(3, 1) = 1 

• GCD(120,3) = 3! 



Practice

p=11, q=13, 2 < e <= 8



Practice

p=11, q=13, 2 < e <= 8  

n = p*q = 143 
ϕ(n) = (p-1)(q-1) = 10*12 = 120 

Calculate d  

GCD (ϕ(n),e) = GCD(120,3)= 3, GCD(120,5) = 5, GCD(120,7) = GCD(17,1) = 1 
7*d + 120*k = 1 
120 = 17*7 + 1              (no substitution steps needed) 
(-17)*7 + 120*1 = 1 

d = -17 + 120 = 103  

Public Key = {7, 143} 
Private Key = {103, 143}



More Practice



Practice

p=5, q=13, e=5



Practice

p=5, q=13, e=5 

n = p*q = 65 
ϕ(n) = (p-1)(q-1) = 4*12 = 48 

Calculate d 

GCD (ϕ(n),e) = GCD (48,5) = GCD(5,3) = GCD(3,2) = 1 
5*d + 48*k = 1              (notice how these match the substitution steps) 
48 = 9*5 + 3 
5 = 1*3 + 2 
3 = 1*2 + 1 
(substitute) 
3 - 1*2 = 1 
3 - 1*(5 - 1*3) = 1 
48 - 9*5 - 1*(5 - 1*(48 - 9*5)) = 1 
48 - 9*5 - 1*5 + 1*48 - 9*5 = 1 
2*48 - 19*5 = 1 
d = -19 + 48 = 29 

Public Key = {5, 65} 
Private Key = {29, 65}



Practice

p=17, q=11, e=7



Practice

p=17, q=11, e=7  

n = p*q = 187 
ϕ(n) = (p-1)(q-1) = 16*10 = 160  

Calculate d  

GCD (ϕ(n), e) = GCD (160, 7) = GCD (7,6) = 1 
7*d + 160*k = 1 
160 = 22*7 + 6 
7 = 1*6 + 1 
(substitute) 
7 - 1*6 = 1 
7 - 1*(160 - 22*7) = 1 
7 - 160 + 22*7 = 1 
23*7 - 1*160 = 1 
d = 23  

Public Key = {7, 187} 
Private Key = {23, 187}


