
CS 465 Computer Security

RSA

Daniel Zappala, adapted from Kent Seamons
Fall 2018

Recap

• Number theory

• What is a prime number?

• What is prime factorization?

• What is a GCD?

• What does relatively prime mean? What does co-prime mean?

• What does congruence mean?

• What is the additive inverse of 13 % 17 ?

• What is the multiplicative inverse of 7 % 8 ?

Recap: Diffie-Hellman

• You’re trapped in your spaceship

• You have enough energy to send a single
message to your HQ

• You have:

• HQ’s public DH values

• g=5, p = 875498279345…

	 ga = 32477230478…

• Your AES implementation from Labs #1 & 2

• An arbitrary precision calculator

• How can you construct your message so that
it will be safe from eavesdroppers?

Public Key Encryption

Public Key Terminology

• Public Key

• Private Key

• Digital Signature

• You encrypt with a public key, and you decrypt with a
private key

• You sign with a private key, and you verify with a public
key

Public Key Encryption Model

Encryption Algorithm

Alice Bob

Plaintext

Bob’s
public key

Ciphertext

Decryption Algorithm

Plaintext

Bob’s
private key

Public Key Digital Signature Model

Signing Algorithm

Alice Bob

Plaintext

Alice’s
private key

Verification Algorithm

Alice’s
public key

Verified

History of RSA

• Invented in 1977 by Ron Rivest, Adi Shamir, Leonard Adleman

• Patented until 2000

• It’s withstood years of extensive cryptanalysis

• Suggests a level of confidence in the algorithm

• Example of successful attacks against implementations

• Side channel attacks

• Poor random number generators

Textbook RSA

• m = message
• c = ciphertext
• e = public exponent
• d = private exponent
• n = modulus

• RSA Encryption: c = me % n

• RSA Decryption: m = cd % n

Why Public Key Encryption Works

The Math Behind RSA

• RSA encrypt/decrypt operations are simple

• The math to get to the point where these operations work
is not so simple (at first)

• Fermat’s little theorem

• Euler’s generalization of Fermat’s little theorem

Fermat’s Little Theorem

• If

• p is prime

• a is not divisible by p

• Then Fermat’s theorem states

• ap-1 ≡ 1 (mod p)

• This serves as the basis for

• Fermat’s primality test

• Euler’s generalization

Pierre de Fermat
(1601-1655)

Euler’s Generalization of  
Fermat’s Little Theorem

• Euler said

• aϕ(n) ≡ 1 (mod n)

• ϕ(n)

• Euler’s totient function

• The number of values less than n which are relatively prime to n

• Multiplicative group of integers (Zn*)

• RSA is interested in values of n that are the product of two large prime
numbers p and q

Leonhard Euler
(1707-1783)

n doesn’t need to be prime
a must still be co-prime to n

Computing ϕ(n) in RSA

• When p * q = n, and p and q are prime, what is ϕ(n)?

• ϕ(n) = the number of integers between 0 and n that are co-prime to n

• Proof (When p * q = n)

• Observations 
	 1) there are p-1 multiples of q between 1 and n 
	 2) there are q-1 multiples of p between 1 and n 
	 These multiples are not co-prime to n 
 
Definition: 
	 ϕ(n) = # of values between 0 and n minus  
	 	 # of values between 0 and n not relatively prime to n

ϕ(n) = [n – 1] – [(p-1) + (q-1)] 
 = [pq – 1] – (p-1) – (q-1)) 
 = pq – p – q + 1  
 = (p-1)(q-1)

(p-1)(q-1)

Why not?

RSA

• Euler said: aϕ(n) ≡ 1 (mod n)

• m(p-1)(q-1) ≡ 1 (mod n)

• Notice: m(p-1)(q-1) * m ≡ m(p-1)(q-1)+1 ≡ m (mod n)

• mϕ(n)+1 ≡ m (mod n)

• Let e*d = k*ϕ(n) + 1

• Then e*d ≡ 1 (mod ϕ(n))

• Therefore med ≡ mk*ϕ(n)+1 ≡ mϕ(n) *mϕ(n) *… * m ≡ m (mod n)

• RSA encryption: me = c (mod n)

• RSA decryption: cd = m (mod n)

Why is RSA secure?

If you could factor n into p and q, then
you know ϕ(n)=(p-1)(q-1), and now you
can easily calculate d (e is public).

This is called the “trap door” in RSA.
Knowing the prime factors is what
makes it easy to decrypt.

It’s hard to factor large primes and hard
to find d without knowing the
factorization.

How To Use Public Key Encryption

Steps for RSA Encryption

• Select p, q (large prime numbers)

• n=p*q

• ϕ(n) = (p-1)(q-1)

• Select integer e where e is relatively prime to ϕ(n)

• Common values for e are 3 and 65537. Why?

• Calculate d, where d*e = 1 (mod ϕ(n))

• Public key is KU = {e, n}

• Private key is KR = {d, n}

RSA Usage

• Given me = c (mod n) and cd = m (mod n)

• What restrictions should be placed on m?

• For bulk encryption (files, emails, web pages, etc)

• Never, never, never encrypt data directly using RSA — inefficient and insecure

• Always use symmetric encryption for data, and use RSA to encrypt the symmetric key, using
a secure padding scheme

• Digital signatures

• Do not sign the entire document — too slow

• Sign (encrypt) a hash of the document using the private key

How To Calculate RSA Values

How do we get p, q, e, and d?

• What is p?

• How do we get it?

• What is q?

• How do we get it?

• What is e?

• How do we get it?

• What is the relationship of e and (p-1)(q-1)?

• What is d?

• How do we get it?

Calculating d

• Goal: find d such that ed = 1 (mod ϕ(n))

• Use the extended Euclidean algorithm

• Calculates x and y such that ax+by=gcd(a,b)

• Let a=e, b=ϕ(n). gcd(e,ϕ(n))=1 because they are co-prime

• Then you have: ex+ϕ(n)y=1

• Take this modulo ϕ(n) and you get: ex≡1 (mod ϕ(n))

• x=d (if x is negative, simply add ϕ(n))

Extended Euclidean Algorithm

• Let p = 5, q = 11, n = 55,
e=17, and ϕ(n)=40

• 17d+40k=1

• 40=2×17+6 GCD with remainder

• 17=2×6+5 GCD with remainder

• 6=1×5+1 (stop at remainder 1)

• Rewrite

• 6−1×5=1

• Substitute

• 6−1×5=1

• 6−1×(17−2×6)=1

• (40−2×17)−1×(17−2×(40−2×17))=1

• Simplify

• (−7)×17+3×40=1

• d=−7 -> add 40 (the modulus) and get d
= 33

• Public key = {17,55}

• Private key = {33,55}

Practice

p=5, q=11, e=3

Practice

p=5, q=11, e=3  

n = p*q = 55
ϕ(n) = (p-1)(q-1) = 4*10 = 40  

 

Calculate d  

3*d + 40*k = 1
40 = 13*3 + 1 (no substitution steps needed)
(-13)*3 + 40 = 1
d = -13 + 40 = 27  

 

Public Key = {3, 55}
Private Key = {27, 55}

An Exception!

GCD(e, ϕ(n)) must be 1

• Be sure to check, otherwise you need a new e

• Easy algorithm:

• GCD(x, y) = GCD(y, x %y) if x > y (recursive computation)

• Example

• GCD(40, 3) = GCD(3, 1) = 1

• GCD(120,3) = 3!

Practice

p=11, q=13, 2 < e <= 8

Practice

p=11, q=13, 2 < e <= 8  

n = p*q = 143
ϕ(n) = (p-1)(q-1) = 10*12 = 120

Calculate d  

GCD (ϕ(n),e) = GCD(120,3)= 3, GCD(120,5) = 5, GCD(120,7) = GCD(17,1) = 1
7*d + 120*k = 1
120 = 17*7 + 1 (no substitution steps needed)
(-17)*7 + 120*1 = 1

d = -17 + 120 = 103  

Public Key = {7, 143}
Private Key = {103, 143}

More Practice

Practice

p=5, q=13, e=5

Practice

p=5, q=13, e=5

n = p*q = 65
ϕ(n) = (p-1)(q-1) = 4*12 = 48

Calculate d

GCD (ϕ(n),e) = GCD (48,5) = GCD(5,3) = GCD(3,2) = 1
5*d + 48*k = 1 (notice how these match the substitution steps)
48 = 9*5 + 3
5 = 1*3 + 2
3 = 1*2 + 1
(substitute)
3 - 1*2 = 1
3 - 1*(5 - 1*3) = 1
48 - 9*5 - 1*(5 - 1*(48 - 9*5)) = 1
48 - 9*5 - 1*5 + 1*48 - 9*5 = 1
2*48 - 19*5 = 1
d = -19 + 48 = 29

Public Key = {5, 65}
Private Key = {29, 65}

Practice

p=17, q=11, e=7

Practice

p=17, q=11, e=7  

n = p*q = 187
ϕ(n) = (p-1)(q-1) = 16*10 = 160  

Calculate d  

GCD (ϕ(n), e) = GCD (160, 7) = GCD (7,6) = 1
7*d + 160*k = 1
160 = 22*7 + 6
7 = 1*6 + 1
(substitute)
7 - 1*6 = 1
7 - 1*(160 - 22*7) = 1
7 - 160 + 22*7 = 1
23*7 - 1*160 = 1
d = 23  

Public Key = {7, 187}
Private Key = {23, 187}

