CS 465 Computer Security

RSA

Recap

- Number theory
- What is a prime number?
- What is prime factorization?
- What is a GCD?
- What does relatively prime mean? What does co-prime mean?
- What does congruence mean?
- What is the additive inverse of 13 \% 17 ?
- What is the multiplicative inverse of 7 \% 8 ?

Recap: Diffie-Hellman

- You're trapped in your spaceship
- You have enough energy to send a single message to your HQ
- You have:
- HQ's public DH values
- $g=5, p=875498279345 \ldots$

$$
g^{a}=32477230478 \ldots
$$

- Your AES implementation from Labs \#1 \& 2
- An arbitrary precision calculator

- How can you construct your message so that it will be safe from eavesdroppers?

Public Key Encryption

Public Key Terminology

- Public Key
- Private Key
- Digital Signature
- You encrypt with a public key, and you decrypt with a private key
- You sign with a private key, and you verify with a public key

Public Key Encryption Model

Public Key Digital Signature Model

History of RSA

- Invented in 1977 by Ron Rivest, Adi Shamir, Leonard Adleman
- Patented until 2000
- It's withstood years of extensive cryptanalysis
- Suggests a level of confidence in the algorithm
- Example of successful attacks against implementations
- Side channel attacks
- Poor random number generators

Textbook RSA

- m = message
- $\mathrm{c}=$ ciphertext
- e = public exponent
- $d=$ private exponent
- $\mathrm{n}=$ modulus
- RSA Encryption: $\mathrm{c}=\mathrm{me} \% \mathrm{n}$
- RSA Decryption: $m=c^{d} \% n$

Why Public Key Encryption Works

The Math Behind RSA

- RSA encrypt/decrypt operations are simple
- The math to get to the point where these operations work is not so simple (at first)
- Fermat's little theorem
- Euler's generalization of Fermat's little theorem

Fermat's Little Theorem

- If
- p is prime
- a is not divisible by p
- Then Fermat's theorem states
- $\quad a^{p-1} \equiv 1(\bmod p)$
- This serves as the basis for

Pierre de Fermat (1601-1655)

- Fermat's primality test
- Euler's generalization

Euler's Generalization of Fermat's Little Theorem

- Euler said
- $\mathrm{a}^{\varphi}(\mathrm{n}) \equiv 1(\bmod \mathrm{n})$

> n doesn't need to be prime a must still be co-prime to n

- $\varphi(\mathrm{n})$
- Euler's totient function
- The number of values less than n which are relatively prime to n

Leonhard Euler (1707-1783)

- Multiplicative group of integers $\left(Z_{n}{ }^{*}\right)$
- RSA is interested in values of n that are the product of two large prime numbers p and q

Computing $\varphi(\mathbf{n})$ in RSA

- When $p^{*} q=n$, and p and q are prime, what is $\varphi(n)$?

(p-1)(q-1)

- $\varphi(\mathrm{n})=$ the number of integers between 0 and n that are co-prime to n

- Observations

1) there are $p-1$ multiples of q between 1 and n
2) there are $q-1$ multiples of p between 1 and n

These multiples are not co-prime to n
Definition:
$\varphi(\mathrm{n})=\#$ of values between 0 and n minus
\# of values between 0 and n not relatively prime to n

$$
\begin{aligned}
\varphi(n) & =[n-1]-[(p-1)+(q-1)] \\
& =[p q-1]-(p-1)-(q-1)) \\
& =p q-p-q+1 \\
& =(p-1)(q-1)
\end{aligned}
$$

RSA

- Euler said: $a^{\varphi}(\mathrm{n}) \equiv 1(\bmod n)$

$$
\text { - } \quad m^{(p-1)(q-1)} \equiv 1(\bmod n)
$$

- Notice: $m^{(p-1)(q-1)}$ * $m \equiv m^{(p-1)(q-1)+1} \equiv m(\bmod n)$
- $m^{\varphi(n)+1} \equiv m(\bmod n)$
- Let $e^{*} d=k^{*} \varphi(n)+1$
- Then $e^{\star} d \equiv 1(\bmod \varphi(n))$
- Therefore $\mathrm{med}^{\mathrm{ed}} \equiv \mathrm{m}^{k^{*} \varphi(n)+1} \equiv \mathrm{~m}_{\boldsymbol{\varphi}(\mathrm{n})}{ }^{*} \mathrm{~m}_{\boldsymbol{\varphi}}(\mathrm{n}) * \ldots{ }^{*} \mathrm{~m} \equiv \mathrm{~m}(\bmod \mathrm{n})$
- RSA encryption: $\mathrm{me}^{\mathrm{e}}=\mathrm{c}(\bmod \mathrm{n})$
- RSA decryption: $c^{d}=m(\bmod n)$

Why is RSA secure?

If you could factor n into p and q , then you know $\varphi(n)=(p-1)(q-1)$, and now you can easily calculate d (e is public).

This is called the "trap door" in RSA. Knowing the prime factors is what makes it easy to decrypt.

It's hard to factor large primes and hard to find d without knowing the factorization.

How To Use Public Key Encryption

Steps for RSA Encryption

- Select p, q (large prime numbers)
- $\mathrm{n}=\mathrm{p}^{*} \mathrm{q}$
- $\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
- Select integer e where e is relatively prime to $\varphi(\mathrm{n})$
- Common values for e are 3 and 65537. Why?
- Calculate d , where $\mathrm{d}^{\star} \mathrm{e}=1(\bmod \varphi(\mathrm{n}))$
- Public key is $\mathrm{KU}=\{\mathrm{e}, \mathrm{n}\}$
- Private key is $\mathrm{KR}=\{\mathrm{d}, \mathrm{n}\}$

RSA Usage

- Given $\mathrm{me}^{e}=\mathrm{c}(\bmod \mathrm{n})$ and $\mathrm{c}^{d}=\mathrm{m}(\bmod \mathrm{n})$
- What restrictions should be placed on m?
- For bulk encryption (files, emails, web pages, etc)
- Never, never, never encrypt data directly using RSA - inefficient and insecure
- Always use symmetric encryption for data, and use RSA to encrypt the symmetric key, using a secure padding scheme
- Digital signatures
- Do not sign the entire document - too slow
- Sign (encrypt) a hash of the document using the private key

How To Calculate RSA Values

How do we get p, q,e, and d?

-What is p ?

- How do we get it?
-What is q ?
- How do we get it?
-What is e?
- How do we get it?
- What is the relationship of e and ($\mathrm{p}-1$)(q-1)?
- What is d?
- How do we get it?

Calculating d

- Goal: find d such that ed $=1(\bmod \varphi(\mathrm{n}))$
- Use the extended Euclidean algorithm
- Calculates x and y such that $a x+b y=g c d(a, b)$
- Let $\mathrm{a}=\mathrm{e}, \mathrm{b}=\varphi(\mathrm{n})$. $\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{n}))=1$ because they are co-prime
- Then you have: $\operatorname{ex}+\varphi(n) y=1$
- Take this modulo $\varphi(n)$ and you get: $\mathrm{ex} \equiv 1(\bmod \varphi(n))$
- $\mathrm{x}=\mathrm{d}$ (if x is negative, simply add $\varphi(\mathrm{n})$)

Extended Euclidean Algorithm

- Let $\mathrm{p}=5, \mathrm{q}=11, \mathrm{n}=55$, $\mathrm{e}=17$, and $\varphi(\mathrm{n})=40$
- $17 d+40 k=1$
- $40=2 \times 17+6$
- $17=2 \times 6+5$
- $6=1 \times 5+1$
(stop at remainder 1)
- Rewrite

GCD with remainder

GCD with remainder

- $6-1 \times 5=1$
- Substitute
- $6-1 \times 5=1$
- $6-1 \times(17-2 \times 6)=1$
- $(40-2 \times 17)-1 \times(17-2 \times(40-2 \times 17))=1$
- Simplify
- $(-7) \times 17+3 \times 40=1$
- d=-7 -> add 40 (the modulus) and get d $=33$
- Public key $=\{17,55\}$
- Private key $=\{33,55\}$

Practice

$$
p=5, \quad q=11, \quad e=3
$$

Practice

```
p=5, q=11, e=3
n = p*q = 55
\varphi(n)=(p-1)(q-1)=4*10=40
Calculate d
3*d + 40*k = 1
40 = 13*3 + 1 (no substitution steps needed)
(-13)*3 + 40=1
d=-13+40=27
Public Key = {3, 55}
Private Key = {27, 55}
```

An Exception!

GCD(e, $\varphi(\mathbf{n}))$ must be 1

- Be sure to check, otherwise you need a new e
- Easy algorithm:
- $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\mathrm{GCD}(\mathrm{y}, \mathrm{x} \% \mathrm{y})$ if $\mathrm{x}>\mathrm{y}$ (recursive computation)
- Example
- $\operatorname{GCD}(40,3)=\operatorname{GCD}(3,1)=1$
- $\operatorname{GCD}(120,3)=3$!

Practice

$$
p=11, \quad q=13,2<e<=8
$$

Practice

```
p=11, q=13, 2 < e <= 8
n = p*q = 143
\varphi(n)=(p-1)(q-1)=10*12=120
```

Calculate d

```
GCD (\varphi (n),e)=GCD (120,3)=3, GCD (120,5)=5,GCD(120,7)=GCD(17,1)=1
7*d + 120*k = 1
120 = 17*7 + 1 (no substitution steps needed)
(-17)*7 + 120*1 = 1
d = -17 + 120=103
```

Public $\operatorname{Key}=\{7,143\}$
Private $\operatorname{Key}=\{103,143\}$

More Practice

Practice

$$
p=5, \quad q=13, \quad e=5
$$

Practice

```
p=5, q=13, e=5
n = p*q=65
\varphi(n)=(p-1)(q-1)=4*12=48
Calculate d
GCD (\varphi(n),e)=\operatorname{GCD (48,5)=\operatorname{GCD}(5,3)=\operatorname{GCD}(3,2)=1}=1,
5*d + 48*k = 1 (notice how these match the substitution steps)
48=9*5 + 3
5 = 1*3 + 2
3 = 1*2 + 1
(substitute)
3-1*2 = 1
3-1*(5 - 1*3) = 1
48-9*5 - 1*(5 - 1*(48 - 9*5)) = 1
48-9*5 - 1*5 + 1*48-9*5 = 1
2*48-19*5 = 1
d = -19+48=29
Public Key = {5, 65}
Private Key = {29, 65}
```


Practice

$$
p=17, \quad q=11, \quad e=7
$$

Practice

```
p=17, q=11, e=7
n = p*q = 187
\varphi(n) = (p-1)(q-1) = 16*10 = 160
Calculate d
GCD (\varphi(n), e) = GCD (160, 7) = GCD (7,6) = 1
7*d + 160*k = 1
160 = 22*7 + 6
7 = 1*6 + 1
(substitute)
7 - 1*6 = 1
7 - 1*(160-22*7) = 1
7 - 160 + 22*7 = 1
23*7 - 1*160 = 1
d = 23
```

Public Key = \{7, 187\}
Private Key $=\{23,187\}$

