CS 465
 Computer Security

Public Key Cryptography

Public Key Encryption Model

Why Public Key Crypto is Cool

- Has a linear solution to the key distribution problem
- Symmetric crypto has an exponential solution
- Send messages to people you don’t share a secret key with
- So only they can read it
- They know it came for you

Number Theory

Prime Numbers

- Definition: An integer whose only factors are 1 and itself
- There are an infinite number of primes
- How many primes are there?
- Any large number n has about a 1 in $\ln (n)$ chance of being prime

Prime Number Questions

- If everyone needs a different prime number won't we run out?
- Approximately 10151 primes 512 bits (or less)
- Atoms in the universe: 10^{77}
- If every atom in the universe needed 1 billion primes every microsecond from the beginning of time until now you would need 10109 primes
- That means there's still about 10^{151} left

Prime Number Questions

- What if two people pick the same prime?
- Odds are significantly less than the odds of your computer spontaneously combusting at the exact moment you win the lotto
- Couldn't someone create a database of all primes and use that to break public key crypto?
- Assuming you could store $1 \mathrm{~GB} / \mathrm{gram}$, then the weight of a drive containing the 512-bit primes would exceed the Chandrasekhar limit (theoretical maximum mass a white dwarf star can have and still remain a white dwarf) and collapse into a black hole

Prime Factorization : The Fundamental Theorem of Arithmetic

- All integers can be expressed as a product of (powers of) primes
- $48=2 * 2 * 2 * 2 * 3$
- Factorization is the process of finding the prime factors of a number
- This is a hard problem for large numbers

Greatest Common Divisor (GCD)

- A.k.a., greatest common factor
- The largest number that evenly divides two numbers
- $\operatorname{GCD}(15,25)=5$

Relatively Prime

- Two numbers x and y are relatively prime if their GCD $=1$
- No common factors except 1
- Example - 38 and 55 are relatively prime
- $38=2$ * 19
- $55=5^{*} 11$

Modular (\%) Arithmetic

- Sometimes referred to as "clock arithmetic" or "arithmetic on a circle"
- Two numbers a and b are said to be congruent (equal) modulo N iff (a-b)/N=0
- Equivalent statements: their difference is divisible by N with no remainder, their difference is a multiple of $N, a \% n \equiv b \% n$
- Example: 30 and 40 are congruent mod 10
- Modulo operation
- Find the remainder, e.g. $15 \bmod 10=5$

Notation

- Z - the set of integers $\{\ldots-2,-1,0,1,2 \ldots\}$
- Z_{n} - the set of integers modulo $n ;\{0 . . \mathrm{n}-1\}$
- $Z_{n}{ }^{*}$ - the multiplicative group of integers modulo n
- the set of integers modulo n that are relatively prime to n
- $Z_{n}{ }^{*}$ is closed under multiplication $\bmod n$
- $Z_{n}{ }^{*}$ does not contain 0 since the $G C D(0, n)=n$
- $Z_{10}{ }^{*}=$?

$$
\mathrm{Z}_{12}^{*}=?
$$

$$
Z_{14}{ }^{*}=?
$$

Additive Inverse

- In Z, the additive inverse of 3 is -3 , since $3+-3=0$, the additive identity.
- In Z_{n}, the additive inverse of a is $n-a$, since $\mathrm{a}+(\mathrm{n}-\mathrm{a})=\mathrm{n}$, which is congruent to $0(\bmod \mathrm{n})$.
- What is the additive inverse of $4 \bmod 10$?

Multiplicative Inverse

- In Z, the multiplicative inverse of 3 is $1 / 3$, since $3^{\star} 1 / 3=1$
- The multiplicative identity in both Z and Z_{n} is 1
- The multiplicative inverse of 3 mod 10 is 7 , since $3^{*} 7=21=1(\bmod 10)$
- This could be written 3^{-1}, or (rarely) $1 / 3$

Distributive Property

- Distribution in + and *
- Modular arithmetic is distributive.

$$
a+b(\bmod n)=(a \bmod n)+(b \bmod n)(\bmod n)
$$

Big Examples

What is the sum of these numbers modulo 20 ?

1325104987134069812734109243861723406983176
1346139046817340961834764359873409884750983
3632462309486723465794078340898340923876314
3641346983862309587235093857324095683753245
$+2346982743069384673469268723406982374936877$

Big Examples

What is the product of these numbers modulo 25 ?
1234659823572938572
2139582753931306947

1398173619384713413

2496827464249812355

2436781359183781379

* 1351839761361377050

Modular Exponentiation

- Problems of the form $c=$ be mod m given base b, exponent e, and modulus m
- If b, e, and m are non-negative and $\mathrm{b}<\mathrm{m}$, then a unique solution c exists and has the property $0 \leq c<m$
- For example, $12=52 \bmod 13$
- Modular exponentiation problems are easy to solve, even for very large numbers
- However, solving the discrete logarithm (finding e given c, b, and m) is believed to be difficult

Brute Force Method

- The most straightforward method to calculating a modular exponent is to calculate be directly, then to take this number modulo m.
- Consider trying to compute c , given $\mathrm{b}=4, \mathrm{e}=13$, and $\mathrm{m}=$ 497:
- Using a calculator, compute $4^{13}=67,108,864$. , modulo 497, $\mathrm{c}=445$.
- Note that b is only one digit in length and that e is only two digits in length, but the value be is 10 digits in length.

Brute Force Method

- In strong cryptography, b is often at least 256 binary digits (77 decimal digits).
- Consider $\mathrm{b}=5$ * 1076 and $\mathrm{e}=17$, both of which are perfectly reasonable values. In this example, b is 77 digits in length and e is 2 digits in length, but the value be is 1304 decimal digits in length.
- Such calculations are possible on modern computers, but the sheer enormity of such numbers causes the speed of calculations to slow considerably. As b and e increase even further to provide better security, the value be becomes unwieldy.

Brute Force Method

- The time required to perform the exponentiation depends on the operating environment and the processor. If exponentiation is performed as a series of multiplications, then this requires $\mathrm{O}(\mathrm{e})$ time to complete.

Diffie Hellman Project

- Write your own modular exponentiation routine
- Use a bignum library
- Divide and conquer algorithm O(log e)

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

- Allows two users to establish a secret key over an insecure medium without any prior secrets
- Two system parameters p and g.
- Public values that may be used by all the users in a system
- Parameter p is a large prime number
- Parameter g (usually called a generator) is an integer less than p, such that for every number n with $0<n<p$, there is a power k of g such that $\mathbf{n}=\mathbf{g k} \boldsymbol{\operatorname { m o d }} \mathbf{p}$
- g is called a primitive root

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a shared secret key
- Alice and Bob agree on or use public values p, g
- p is a large prime number
- g is a generator
- Alice generates a random private value a and Bob generates a random private value \mathbf{b} where a and b are integers

Diffie-Hellman Key Exchange

- Alice and Bob derive their public values using parameters p and g and their private values
- Alice's public value $=$ ga $^{\text {a }} \bmod p$
- Bob's public value $=g^{b}$ mod p
- Alice and Bob exchange their public values
- Alice computes $\mathbf{g}^{\mathbf{b a}}=\left(\mathbf{(g}^{\mathbf{b}}\right)^{\mathbf{a}} \mathbf{~ m o d} \mathbf{p}$ Bob computes $\mathbf{g}^{\mathbf{a b}}=\left(\mathbf{g}^{\mathbf{a}} \mathbf{b}^{\mathbf{b}} \mathbf{~ m o d} \mathbf{p}\right.$
- Since $\mathbf{g}^{\mathbf{a b}}=\mathbf{g}^{\mathbf{b a}}=\mathbf{k}$, Alice and Bob now have a shared secret key \mathbf{k}

A Crowded Room of Mathematicians

Why is DH Secure?

- Discrete logarithm problem
- Inverse of modular exponentiation
- $c=b^{e} \bmod m$
- e is called the "discrete logarithm"
- Solving the discrete logarithm (finding \mathbf{e} given \mathbf{c}, \mathbf{b}, and \mathbf{m}) is believed to be difficult for large numbers
- See https://www.nku.edu/~christensen/ 092mat483\%20DH\%20key\%20exchange.pdf

Attacks Against DH

- Diffie-Hellman Key Exchange is secure against a passive attacker
- How can an active attacker disrupt the protocol? Consider a man in the middle
- Modify Alice/Bob public values as they are exchanged
- Replace with Mallory's public values
- Replace ga and gb with the value 1
- Replace ga with h that has a small order (small number of elements generated by h mod p), which makes it easy to break - see small subgroup attacks
- Must use a protocol to provide authentication and integrity

Practical Considerations

- Chose a safe prime p where $p=2 q+1$ where q is also prime
- Safe prime means the group G has a subgroup of large size (q)
- Unfortunately, very inefficient
- How big should p be?
- Cryptography Engineering, published 2010: 2048 bits until 2022, 3072 bits until 2038, 4096 bits until 2050.
- Check public values for security properties
- Both p and q are prime, q is 256 bits long, and p is sufficiently large
- q is a divisor of $(p-1)$
- $g!=1$ and $g^{q}=1$
- Hash final result of DH to generate a shared key for Alice/Bob

Practical Considerations

- How to fortify the protocol against active attackers?
- Create a certified list of public values
- Use digitally signed public parameters
- Public values for Diffie-Hellman:
- https://datatracker.ietf.org/doc/rfc3526/?include text=1

