CS 465 Computer Security

RSA

Daniel Zappala, adapted from Kent Seamons
Fall 2018

Recap

- Number theory
What is a prime number”?
What is prime factorization”
What is a GCD?
What does relatively prime mean” \What does co-prime mean?
What does congruence mean?
What is the additive inverse of 13 % 17 ?

What is the multiplicative inverse of 7 % 8 7

Recap: Diffie-Hellman

You're trapped in your spaceship

You have enough energy to send a single
message to your HQ

You have:
HQ’s public DH values
g=5, p = 875498279345...
g2 = 32477230478...
Your AES implementation from Labs #1 & 2

An arbitrary precision calculator

How can you construct your message so that
it will be safe from eavesdroppers”?

Public Key

—Nncryption

Public Key Terminology

- Public Key
- Private Key
- Digital Signature

* You encrypt with a public key, and you decrypt with a
private key

* You sign with a private key, and you verify with a public
key

Public Key Encryption Model

Alice Bob's Bob’s Bob
public key private key
R]/ &
K

Plaintext Ciphertext Plaintext

O = O

Encryption Algorithm Decryption Algorithm

Public Key Digital Signature Model

Alice Alice’s Alice’s Bob
pr<ey public key @

&)
4

b SN LN

Plaintext
o W o Verified

Signing Algorithm Verification Algorithm

History of RSA

- Invented in 1977 by Ron Rivest, Adi Shamir, Leonard Adleman
- Patented until 2000

- [t’'s withstood years of extensive cryptanalysis
Suggests a level of confidence in the algorithm
Example of successful attacks against implementations
- Side channel attacks

- Poor random number generators

Textbook RSA

m = message

C = ciphertext

e = public exponent
d = private exponent
n = modulus

RSA Encryption: ¢c=me % n

RSA Decryption: m=cd % n

Public Key

—ncryption Works

The Math Behind RSA

- RSA encrypt/decrypt operations are simple

- The math to get to the point where these operations work
IS not so simple (at first)

* Fermat’s little theorem

* Ekuler’s generalization of Fermat’s little theorem

Fermat’s Little Theorem

- |t
p IS prime
a is not divisible by p
* Then Fermat’s theorem states

ac-'=1(mod p) (Because ar = p (Mmod p))

. This serves as the basis for Pierre de Fermat
(1601-1655)

Fermat’s primality test

Euler’s generalization

Euler’s Generalization of
Fermat’s Little Theorem

- Euler said
n doesn’t need to be prime
a*" = 1 (mod n) a must still be co-prime to n
i)

Euler’s totient function

The number of values less than n which are relatively prime to n Leonhard Euler
(1707-1783)

Multiplicative group of integers (Z,,")

- RSA is interested in values of n that are the product of two large prime
numbers p and g

Computing ¢(n) in RSA

When p * g =n, and p and g are prime, what is ¢(n)?
o(n) = the number of integers between 0 and n that are co-prime to n
Proof (When p * g =n)

Observations
1) there are p-1 multiples of g between 1 and n
2) there are g-1 multiples of p between 1 and n
These multiples are not co-prime to n

Definition:
¢(n) = # of values between 0 and n minus
of values between 0 and n not relatively prime to n

o) =[n—=1]—[(p-1) + (9-1)]
=[pg-1]- (p-1)-(9-1))
= pg-p-q+1
= (p-1)(@-1)

Why not”?

(o-1)(-1)

RSA

Euler said: a¢ = 1 (mod n)

s Tmedn Why is RSA secure?

Notice: me-1a-1) * m = me-1a-1)+1

m (mod n)
If you could factor n into p and q,
then you know o(n)=(p-1)(g-1),
and now you can easily calculate
d (e is public).

me+1 = m (mod n)

Let e*d = k*g(n) + 1
This is called the “trap door” in
Then e*d = 1 (mod @(n)) RSA. Knowing the prime factors
IS what makes it easy to decrypt.
Therefore med = mices = me) fme =, = m = m (mod n) It’s hard to factor large primes
and hard to find d without
RSA encryption: mé = ¢ (mod n) knowing the factorization.

RSA decryption: cd = m (mod n)

How To Use

Public Key

—Nncryption

Steps for RSA Encryption

Select p, g (large prime numbers)
N=p“q

¢(n) = (P-1)(-1)

Select integer e where e is relatively prime to ¢(n)

* Common values for e are 3 and 65537. Why?

Calculate d, where d*e = 1 (mod ¢(n))
Public key is KU = {e, n}

Private key is KR = {d, n}

RSA Usage

Given me = ¢ (mod n) and ¢d = m (mod n)
What restrictions should be placed on m?
For bulk encryption (files, emails, web pages, etc)
Never, never, never encrypt data directly using RSA — inefficient and insecure

Always use symmetric encryption for data, and use RSA to encrypt the symmetric key, using
a secure padding scheme

Digital signatures
Do not sign the entire document — too slow

Sign (encrypt) a hash of the document using the private key

How To Calculate RSA Values

How do we get p, q, e, and d?

- What is p?

* How do we get it?
- What is g7

* How do we get it?
- What is €?

* How do we get it?

* What is the relationship of e and (p-1)(g-1)?
- What is d?

* How do we get it?

Recap

n=p'q -> @n)=(P-1)Q-1)
Choose e*d =K on)+1 -> e*d=1(mod gp(n))

med = MKe+1 = me) *me * /. *m = m (mod n)

Select integer e where e is relatively prime to ¢(n)

Calculate d, where d*e = 1 (mod @(n))

Calculating d

- Goal: find d such that ed = 1 (mod ¢(n)) - Use the extended Euclidean
algorithm

- Based on the fact that GCD can be defined recursively

If x >y, then GCD(x,y) =(recursively) GCD(y, x-y)

Also if x >y, then GCD(x,y) =(recursively) GCD(y, x%y)
+ GCD can also be used as follows:

Suppose ax + by = ged(x,y)

If X is the modulus, and gcd (x,y) = 1

* Thenax+by=1and b isy

Calculating d

- Goal: find d such that ed = 1 (mod ¢(n))

- Use the extended Euclidean algorithm
Calculates x and y such that ax+by=gcd(a,b)
Let a=e, b=g(n). gcd(e,p(n))=1 because they are co-prime
- Then you have: ex+g(n)y=1
- Take this modulo ¢(n) and you get: ex=1 (mod ¢(n))

- x=d (if x is negative, simply add ¢(n))

Extended Euclidean Algorithm

- Letp=5,g=11, n =55, - Substitute
e=1/, and ¢(n)=40 BBt
170+40k=1 © 6-1x(17-2%6)=1

© (40=-2x17)=1x(17-2x(40-2x17))=1
AQ=2x1/4+6 GCD with remainder
- Simplify
17=2x6+5 GCD with remainder
« (=7)x17+3x40=1

6=1x5+1 (stop at remainder 1) . d=—7 -> add 40 (the modulus) and get

=33

Rewrite
- Public key = {17,55}

6—1%x5=1 - Private key = {33,55]}

Practice

Practice

Calculate d

3*d + 40*k =1

40 = 13*3 + 1 (no substitution steps needed)
(=13)*3 + 40 =1

d = -13 + 40 = 27

Public Key = {3, 55}
Private Key = {27, 55}

An

=xception!

GCD(e, ¢(n)) must be 1

- Be sure to check, otherwise you need a new e

- Easy algorithm:

- GCD(, y) = GCD(y, x %y) if x>y (recursive computation)
- Example

- GCD(40, 3) = GCD(3, 1) =1

. GCD(120,3) = 3!

Practice

p=11, g=13, 2 < e <= 8

Practice

Calculate d

GCD (g (n),e) = GCD(120,3)= 3,
7*d + 120*k = 1

120 = 17*7 + 1
(-17)*7 + 120%1 = 1

d=-17 + 120 = 103

Public Key = {7, 143}
Private Key = {103, 143}

GCD (120, 5)

= 5’

GCD (120, 7)

= GCD(17,1)

(no substitution steps needed)

1

More Practice

Practice

Practice

Calculate d

GCD (¢(n),e) = GCD (48,5) = GCD(5,3) = GCD(3,2) =1

5*d + 48*k = 1 (notice how these match the substitution steps)
48 = 9*5 + 3

5 = 1*3 + 2

3 =1*2 + 1

(substitute)

3 - 1*2 =1

3 - 1*%(5 - 1*3) =1

48 - 9*5 - 1*(5 - 1*(48 - 9*5)) =1

48 - 9*5 - 1*5 + 1*48 - 9*5 =1
2*48 - 19*5 =1
d = -19 + 48 = 29

Public Key = {5, 65}
Private Key = {29, 65}

Practice

p=17, g=11, e=7

Practice

¢(n) = (p-1) (g-1) = 16*10 = 160
Calculate d

GCD (¢(n), e) = GCD (160, 7) = GCD (7,6) =1
7*d + 160*k = 1

160 = 22*7 + ©

7 =16 + 1

(substitute)

7 - 1*6 = 1

7 — 1*(1e0 - 22*7) =1

7 - 160 + 22*7 =1

23*7 - 1*160 = 1

d = 23

Public Key = {7, 187}
Private Key = {23, 187}

