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Why Public Key Crypto is Cool

• Has a linear solution to the key distribution problem 

• Symmetric crypto has an exponential solution 

• Send messages to people you don’t share a secret key 
with 

• So only they can read it 

• They know it came for you



Number Theory



Prime Numbers

• Definition: An integer whose only factors are 1 and itself 

• There are an infinite number of primes 

• How many primes are there? 

• Any large number n has about a 1 in ln(n) chance of being prime



Prime Number Questions

• If everyone needs a different prime number won’t we run 
out? 

• Approximately 10151 primes 512 bits (or less) 

• Atoms in the universe: 1077 

• If every atom in the universe needed 1 billion primes every 
microsecond from the beginning of time until now you would need 
10109 primes 

• That means there’s still about 10151 left

Source: Applied Cryptography (Schneier)



Prime Number Questions

• What if two people pick the same prime? 

• Odds are significantly less than the odds of your computer 
spontaneously combusting at the exact moment you win the lotto  

• Couldn’t someone create a database of all primes and 
use that to break public key crypto? 

• Assuming you could store 1 GB/gram, then the weight of a drive 
containing the 512-bit primes would exceed the Chandrasekhar limit 
(theoretical maximum mass a white dwarf star can have and still 
remain a white dwarf) and collapse into a black hole

Source: Applied Cryptography (Schneier)



Prime Factorization : 
The Fundamental Theorem of Arithmetic

• All integers can be expressed as a product of (powers of) 
primes 

• 48 = 2 * 2 * 2 * 2 * 3 

• Factorization is the process of finding the prime factors of 
a number 

• This is a hard problem for large numbers



Greatest Common Divisor (GCD)

• A.k.a., greatest common factor 

• The largest number that evenly divides two numbers 

• GCD (15, 25) = 5



Relatively Prime

• Two numbers x and y are relatively prime if their GCD = 1 

• No common factors except 1 

• Example – 38 and 55 are relatively prime 

• 38 = 2 * 19 

• 55 = 5 * 11



Modular (%) Arithmetic

• Sometimes referred to as “clock arithmetic” or “arithmetic on a circle” 

• Two numbers a and b are said to be congruent (equal) modulo N iff 
(a-b)/N=0  

• Equivalent statements: their difference is divisible by N with no remainder, their 
difference is a multiple of N, a%n ≡ b%n 

• Example: 30 and 40 are congruent mod 10 

• Modulo operation 

• Find the remainder, e.g.15 mod 10 = 5



Notation

• Z - the set of integers {…-2,-1,0,1,2…} 

• Zn - the set of integers modulo n; {0..n-1} 

• Zn* - the multiplicative group of integers modulo n 

• the set of integers modulo n that are relatively prime to n 

• Zn* is closed under multiplication mod n 

• Zn* does not contain 0 since the GCD(0,n)=n 

• Z10*   = ?            Z12*   = ?           Z14*   = ?



Additive Inverse

• In Z, the additive inverse of 3 is -3,  
since 3 + -3 = 0, the additive identity. 

• In Zn, the additive inverse of a is n-a,  
since a+(n-a) = n, which is congruent to 0 (mod n). 

• What is the additive inverse of 4 mod 10?



Multiplicative Inverse

• In Z, the multiplicative inverse of 3 is 1/3, since 3*1/3=1 

• The multiplicative identity in both Z and Zn is 1  

• The multiplicative inverse of 3 mod 10 is 7, since 
3*7=21=1 (mod 10) 

• This could be written 3-1, or (rarely) 1/3



Distributive Property

• Distribution in + and *  

• Modular arithmetic is distributive.  
 
a+b (mod n) =  (a mod n) + (b mod n) (mod n) 



Big Examples

What is the sum of these numbers modulo 20? 

	 1325104987134069812734109243861723406983176 

	 1346139046817340961834764359873409884750983 

	 3632462309486723465794078340898340923876314 

	 3641346983862309587235093857324095683753245 

+	 2346982743069384673469268723406982374936877



Big Examples

What is the product of these numbers modulo 25? 

	 1234659823572938572 

	 2139582753931306947 

	 1398173619384713413 

	 2496827464249812355 

	 2436781359183781379 

*	 1351839761361377050



Modular Exponentiation

• Problems of the form c = be mod m  
given base b, exponent e, and modulus m 

• If b, e, and m are non-negative and b < m, then a unique solution c 
exists and has the property 0 ≤ c < m 

• For example, 12 = 52 mod 13 

• Modular exponentiation problems are easy to solve, even for very 
large numbers 

• However, solving the discrete logarithm (finding e given c, b, and m) 
is believed to be difficult

http://en.wikipedia.org/wiki/Discrete_logarithm


Brute Force Method

• The most straightforward method to calculating a modular 
exponent is to calculate be directly, then to take this number 
modulo m. 

• Consider trying to compute c, given b = 4, e = 13, and m = 
497: 

• Using a calculator, compute 413 = 67,108,864., modulo 497, c = 445. 

• Note that b is only one digit in length and that e is only two digits in length, 
but the value be is 10 digits in length. 

 
 

Source: wikipedia – modular exponentiation



Brute Force Method

• In strong cryptography, b is often at least 256 binary digits (77 
decimal digits). 

• Consider b = 5 * 1076 and e = 17, both of which are perfectly 
reasonable values. In this example, b is 77 digits in length and e is 2 
digits in length, but the value be is 1304 decimal digits in length. 

• Such calculations are possible on modern computers, but the sheer 
enormity of such numbers causes the speed of calculations to slow 
considerably. As b and e increase even further to provide better 
security, the value be becomes unwieldy. 

 
Source: wikipedia – modular exponentiation



Brute Force Method

• The time required to perform the exponentiation 
depends on the operating environment and the 
processor. If exponentiation is performed as a series of 
multiplications, then this requires O(e) time to complete. 

 
 

Source: wikipedia – modular exponentiation



Diffie Hellman Project

• Write your own modular exponentiation routine 

• Use a bignum library 

• Divide and conquer algorithm O(log e)



Diffie-Hellman Key Exchange



Diffie-Hellman Key Exchange

• Allows two users to establish a secret key over an insecure 
medium without any prior secrets 

• Two system parameters p and g.  

• Public values that may be used by all the users in a system 

• Parameter p is a large prime number  

• Parameter g (usually called a generator) is an integer less than p, such that for 
every number n with 0 < n < p , there is a power k of g such that n = gk mod p 

• g is called a primitive root

http://homepage.smc.edu/morgan_david/vpn/assignments/assgt-primitive-roots.htm
Fred Clift
K
�



Diffie-Hellman Key Exchange

• Alice and Bob want to establish a shared secret key 

• Alice and Bob agree on or use public values p, g 

• p is a large prime number 

• g is a generator 

• Alice generates a random private value a and Bob 
generates a random private value b where a and b are 
integers 



Diffie-Hellman Key Exchange

• Alice and Bob derive their public values using parameters p and g 
and their private values 

• Alice's public value = ga mod p 

• Bob’s  public value = gb mod p 

• Alice and Bob exchange their public values 

• Alice computes gba = (gb)a mod p 
Bob computes gab = (ga)b mod p 

• Since gab = gba = k, Alice and Bob now have a shared secret key k



A Crowded Room of Mathematicians
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550 % 47 
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3150 % 
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Why is DH Secure?

• Discrete logarithm problem 

• Inverse of modular exponentiation 

• c = be mod m 

• e is called the “discrete logarithm” 

• Solving the discrete logarithm (finding e given c, b, and m) is 
believed to be difficult for large numbers 

• See https://www.nku.edu/~christensen/
092mat483%20DH%20key%20exchange.pdf

http://en.wikipedia.org/wiki/Discrete_logarithm
https://www.nku.edu/~christensen/092mat483%20DH%20key%20exchange.pdf
https://www.nku.edu/~christensen/092mat483%20DH%20key%20exchange.pdf


Attacks Against DH

• Diffie-Hellman Key Exchange is secure against a passive attacker 

• How can an active attacker disrupt the protocol? Consider a man in the 
middle 

• Modify Alice/Bob public values as they are exchanged 

• Replace with Mallory’s public values 

• Replace ga and gb with the value 1 

• Replace ga with h that has a small order (small number of elements generated by h mod p), 
which makes it easy to break — see small subgroup attacks 

• Must use a protocol to provide authentication and integrity



Practical Considerations

• Chose a safe prime p where p=2q+1 where q is also prime 

• Safe prime means the group G has a subgroup of large size (q) 

• Unfortunately, very inefficient 

• How big should p be?   

• Cryptography Engineering, published 2010: 2048 bits until 2022, 3072 bits until 2038, 4096 bits until 2050.  

• Check public values for security properties  

• Both p and q are prime, q is 256 bits long, and p is sufficiently large 

• q is a divisor of (p - 1) 

• g != 1 and gq = 1 

• Hash final result of DH to generate a shared key for Alice/Bob



Practical Considerations

• How to fortify the protocol against active attackers? 

• Create a certified list of public values 

• Use digitally signed public parameters 

• Public values for Diffie-Hellman: 

• https://datatracker.ietf.org/doc/rfc3526/?include_text=1

https://datatracker.ietf.org/doc/rfc3526/?include_text=1

