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• Implement AES 

• Use the FIPS 197 spec as your guide 

• Avoid looking at code on the Internet 

• Challenge yourself to implement the algorithm based on sources mentioned 
in the lab specification 

• The standard provides programming language independent pseudo-code 

• 20 pages at the end of the spec has complete, step-by-step debugging 
information to check your solution

Programming Lab #1



• FIPS 197 Spec 

• Wikipedia articles on AES and Finite Field Arithmetic 

• YouTube video 

• Stick figure guide to AES

Resources



C Data Structures

• uint8_t b;                    /* byte — 8 bits*/ 

• uint16_t w;                 /* word — 16 bits */ 

• uint32_t l;                    /* word — 32 bits */ 

• uint8_t state[4][Nb];     /* two dimensional array */ 

• void method(uint8_t in[]);   /* params */ 

• void method(uint8_t state[4][Nb]);               



Binary Operations

Operation Name Example Result

a & b and 0x53 & 0x31 0x11

a | b or 0x53 | 0x31 0x73

a ^ b xor 0x53 ^ 0x31 0x62

a << n left shift 0x53 << 1 0xa6

a >> n right shift 0x53 >> 1 0x29



•  Nb – Number of columns in the State 

• For AES, Nb = 4 

•  Nk – Number of 32-bit words in the Key 

• For AES, Nk = 4, 6, or 8 

•  Nr – Number of rounds (function of Nb and Nk) 

• For AES, Nr = 10, 12, or 14

AES Parameters



Block Cipher

• AES is a block cipher — encryption and decryption on a 
4x4 block of bytes 

• Intermediate representations of the cipher are stored in 
the state variable 

• Bytes stored into and taken out of the state in column 
order 

• See Figure 3



Let’s look at the big picture… 

See Figure 3 for State 

See Figure 5 for Cipher



Overview

• Finite Field Arithmetic 

• Key Expansion  

• Transformations 

• AddRoundKey 

• SubBytes 

• ShiftRows 

• MixColumns



Finite Field Arithmetic



Finite Field Arithmetic

• Finite Fields are a mathematical concept. 

• They consist of a finite set, an addition (+) operator, and a 
multiplication (*) operator. 

• Addition and multiplication can be defined as any 
operation 

• In AES, finite field arithmetic is done using a byte (8-bits, 
unsigned)



• AES uses the finite field GF(28) 

• Galois Field — finite set of numbers with defined operations (addition, multiplication) 

• Polynomials of degree 8 

• b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0 

• {b7, b6, b5, b4, b3, b2, b1, b0} 

• Byte notation for the element: x6 + x5 + x + 1 

•  0x7 + 1x6 + 1x5 + 0x4 + 0x3 + 0x2 + 1x + 1 

• {01100011} – binary  

• {63} – hex

Finite Fields



• Addition (XOR) 

• (x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 

• {01010111} ⊕ {10000011} = {11010100} 

• {57} ⊕ {83} = {d4} 

• Multiplication is tricky 

• Study section 4.2 in the spec 

• In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult 
to interpret.

Finite Field Arithmetic



{57} · {83} = {c1}  

Step 1: multiply 

(x6 + x4 + x2 + x +1) (x7 + x +1)  

	  = x13 + x11 + x9 + x8 + x7 + x7 + x5 + x3 + x2 + x + x6 + x4 + x2 + x +1 
       = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1


       1010111 
*     10000011 
      ———————— 
       1010111 
      1010111 
101011100000 
—————————————— 
10101101111001

Finite Field Multiplication (•)

Identical terms 
cancel



{57} · {83} = {c1} 

Step 2: modulo 

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 modulo ( x8 + x4 + x3 + x +1) 
	 = x7 + x6 +1 

                              _ x5_+ x3___________________________ 
x8 + x4 + x3 + x +1 | x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 
                               x13 +         x9 + x8 + x6 + x5 

                                            ——————————————————- 

                                                           x11 +                              x4 + x3 +1 
                                       x11 +        x7 + x6 +         x4 + x3 

                                                           —————————————————————— 

                                                                                  x7 + x6 +                     +1

Finite Field Multiplication (•)

Irreducible 
Polynomial

(Not the product of two polynomials)



{57} · {83} = {c1} 

Step 2: modulo 

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 modulo ( x8 + x4 + x3 + x +1) 
	 = x7 + x6 +1 

 10101101111001 mod 100011011 
^100011011 
 —————————————— 
 00100000011001 
^  100011011 
 —————————————— 
   000011000001 

Finite Field Multiplication (•)

Irreducible 
Polynomial

(Not the product of two polynomials)



• There’s a better way 

• Patterned after the divide and conquer modular exponentiation algorithm (CS 312) 

• xtime() — very efficiently multiplies its input by {02} 

• It follows that multiplication by x (i.e., {00000010} or {02}) can be implemented at 
the byte level as a left shift and a subsequent conditional bitwise XOR with {1b}. 

• This is the same as multiplying a polynomial by x — what is the binary or hex 
representation of the polynomial x? 

• Multiplication by higher powers can be accomplished through 
repeated applications of xtime()

Efficient Finite Field Multiply



Example: {57} • {13} 

{57} • {02} = xtime({57}) = {ae} 

{57} • {04} = xtime({ae}) = {47} 

{57} • {08} = xtime({47}) = {8e} 

{57} • {10} = xtime({8e}) = {07} 

{57} • {13} = {57} • ({01} ⊕ {02} ⊕ {10})   

	            = ({57} • {01}) ⊕ ({57} • {02}) ⊕ ({57} • {10}) 

	            = {57} ⊕ {ae} ⊕ {07} 

                  = {fe}

Efficient Finite Field Multiply

These are hexadecimal numbers! 
10 in hex is 16 in decimal.



Efficient Finite Field Multiply

Turn this into a method: 

{57}  ∙  {1} = {57} 

{57}  ·  {2}  = xtime({57}) = ({0101 0111} << 1) = {1010 1110} = {AE} (high bit set? no) 

{57}  ·  {4}  = xtime({AE}) = ({1010 1110} << 1) = {1 0101 1100} = {15C} (high bit set? yes) 

         drop high bit and xor {1B} (e.g. xor {11B}) = {15C} ⊕ {11B} = {47}   

{57}  ·  {8} = xtime({47}) = {0100 0111} << 1 = {8E} (high bit set? no) 

{57}  ·  {10} = xtime({8E}) = ({1000 1110} << 1) ⊕ {11B} = {07} 

{57} * {13} = {57} ⊕ {AE} ⊕ {07} 



Key Expansion 

5.2 

Figure 11 

Definition of SubWord() 

Sbox 

Definition of RotWord() 

Rcon 



AddRoundKey 

5.1.4 

State is bytes, key schedule is words



SubBytes 

5.1.1 

Figure 6 

Figure 7



ShiftRows 

5.1.2 

Figure 8



MixColumns 

5.1.3 

Figure 9 

Equations above Figure 9 

Finite Field Multiply


