CS 465
Computer Security

AES

Daniel Zappala, adaptec
Fall 2018

MJchmvsvm 1S LUKE

ANY FEISTEL CIPHER, EXCEPT —~—
IN THE S-BOXES WE SimPLY PECRYPTION
TAKE. THE BITSTRING DowN 01101010
FLIP IT, ANDREVERSE IT.

OOI>I)OlOl

>
\ 11001010
%
C101 0011

l

L INVAAANAAANAN ANANANNNANIN A
AAAANTERANANNNILLN
|'VE BEEN BARRED FROM SPEAKING AT ANY MATOR
CRYPTOGRAPHY CONFERENCES EVER SINCE IT BECAME
CLEAR THAT ALL MY ALGORITHMS WERE JUST
THINLY DISGOISED MIssY ELLSTT SONGS.

Programming Lab #1

- Implement AES

- Use the FIPS 197 spec as your guide
Avoid looking at code on the Internet

Challenge yourself to implement the algorithm based on sources mentioned
in the lalb specification

The standard provides programming language independent pseudo-code

20 pages at the end of the spec has complete, step-by-step debugging
information to check your solution

Resources

- FIPS 197 Spec
- Wikipedia articles on AES and Finite Field Arithmetic

- YouTube video

- Stick figure guide to AES

C Data Structures

* uint8_t b; /* byte — 8 bits*/
- uint16_t w; /* word — 16 bits */
- uint32_t1; /* word — 32 bits */

- uint8_t state[4][Nb]; /* two dimensional array */
- void method(uint8_t in[]); /* params */

- void method(uint8_t state[4]|[Nb]);

Binary Operations

Operation

Example

Result

a&b

alb

ab

a<<n

da>>nN

and

or

XOr

left shift

right shift

Ox53 & 0x31

0x53 | 0x31

Ox53 N Ox31

Ox53 << 1

Ox53 >> 1

Ox11

Ox73

Ox62

Oxab

0x29

AES Parameters

Nb — Number of columns in the State
For AES, Nb = 4
Nk — Number of 32-bit words in the Key
For AES, Nk =4, 6, or 8
Nr — Number of rounds (function of Nb and NKk)

For AES, Nr =10, 12, or 14

Block Cipher

- AES is a block cipher — encryption and decryption on a
4x4 block of bytes

- Intermediate representations of the cipher are stored In
the state variable

- Bytes stored into and taken out of the state in column
order

+ See Figure 3

Let’s look at the big picture...

See Figure 3 for State

See Figure 5 for Cipher

Overview

- Finite Field Arithmetic
- Key Expansion
* Transformations

- AddRoundKey
- SubBytes
- ShiftRows

- MixColumns

Finite Field Arithmetic

Finite Field Arithmetic

- Finite Fields are a mathematical concept.

- They consist of a finite set, an addition (+) operator, and a
multiplication (*) operator.

- Addition and multiplication can be defined as any
operation

- In AES, finite field arithmetic is done using a byte (8-bits,
unsigned)

Finite Fields

- AES uses the finite field GF(28)

Galois Field — finite set of numbers with defined operations (addition, multiplication)
Polynomials of degree 8
O X7 + X8 + X5 + b, X+ + X3 + X2 + b, X + by

107, Dg, bs, D4, 03, 0, b1, B}

- Byte notation for the element: x6 + x5 + X + 1
OX” + 1x6 + 1x5 + Ox4 + Ox3 + Ox2 + 1x + 1
{01100011} - binary

{63} — hex

Finite Field Arithmetic

- Addition (XOR)
(X6 + X4 + X2 + X + 1) + (X7 + X + 1) = X7 + X6 + x4 + X2
(01010111} ® {10000011} = {11010100}
(57} @ {83} = {d4}

- Multiplication is tricky

Study section 4.2 in the spec

In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult
to interpret.

Finite Field Multiplication (-)

{67} - {83} = {c1}

Step 1: multiply

|dentical terms

(X6 + x4+ x2 + x +1) (X7 + x +1) cancel

=XB+XxT+ X9+ X8+ X7+ X"+ X3+ X3+ X2+ X+ X6+ X4+ X2+ X +1
=X13 + x11 + X9 + X8 + X6 + X5 + x4 + x3 +1

1010111
* 10000011

1010111

1010111
101011100000

10101101111001

Finite Field Multiplication (-)

{57}) {88} — {C1 } (Not the product of two polynomials)

Irreducible

Step 2: modulo Polynomial

X134+ x11T+ x99+ x8+ x6+ x5+ x4+ x3+1 modulo (x®+ x4+ x3+ x+1)

= X" + X6 +1
_ X2+ X3
X8+ x4+ x3+ x+1 | x13+ x1T+x9+ x8+ x6+ x5+ x4+ x3+1
x13 + X9+ x8 + x6 + x°
x11 + x4 + x3 +1
X1+ X7+ x6+ X4+ x3

X7 + X6 + +1

Finite Field Multiplication (-)

{57}) {83} — {C‘| } (Not the product of two polynomials)
Irreducible

Step 2: modulo Polynomial

X134+ x11+ x93+ x8+ x6+ x5+ x4+ x3+1 modulo (x8+ x4+ x3+x+1)
= X" + X6 +1

10101101111001 mod 100011011
~100011011

00100000011001
~ 100011011

000011000001

Efficient Finite Field Multiply

- There’s a better way

Patterned after the divide and conquer modular exponentiation algorithm (CS 312)

- xtime() — very efficiently multiplies its input by {02}

[t follows that multiplication by x (i.e., {00000010} or {02}) can be implemented at
the byte level as a left shift and a subsequent conditional bitwise XOR with {1b}.

This is the same as multiplying a polynomial by x — what is the binary or hex
representation of the polynomial x?

Multiplication by higher powers can be accomplished through
repeated applications of xtime()

Efficient Finite Field Multiply

Example: {57} ¢ {13}
(57} « {02} = xtime({57}) = {ae} These are hexadecimal numbers!
| 10 In hex Is 16 In decimal.
{57} ¢ {04} = xtime({ae}) = {47}
{57} » {08} = xtime({47}) = {8e}

(57} {10} = xtime({8e}) = {07}

(o7} » {13} = {57} + ({01} ® {02} ® {10})
= ({67}« {01}) @ ({57} » {02}) @ ({57} * {10})
= {67} ® {ae} @ {07}

= {fe}

Efficient Finite Field Multiply

Turn this into a method:

(o7} - {1} ={57}

(57} - {2} =xtime({57}) = ({0101 0111} << 1) = {1010 1110} = {AE} (high bit set? no)

(57} - {4} =xtime({AE}) = ({1010 1110} << 1) = {1 0101 1100} = {15C} (high bit set? yes)
drop high bit and xor {1B} (e.g. xor {11B}) = {15C} @ {11B} = {47}

(57} - {8} = xtime({47}) = {0100 0111} << 1 = {8E} (high bit set? no)

(57} - {10} = xtime({8E}) = ({1000 1110} << 1) @ {11B} = {07}

(571 * {13} = {57} ® {AE} ® {07}

Key Expansion

5.2

Figure 11
Definition of SubWord()
Sbox

Definition of

RotWord()

Rcon

AddRoundKey

5.1.4

State Is bytes, key schedule is words

SubBytes

5.1.1
Figure ©
Figure 7

ShiftRows

5.1.2
Figure 3

MixColumns

5.1.3
Figure 9

—quations above Figure 9

Finite Field Multiply

