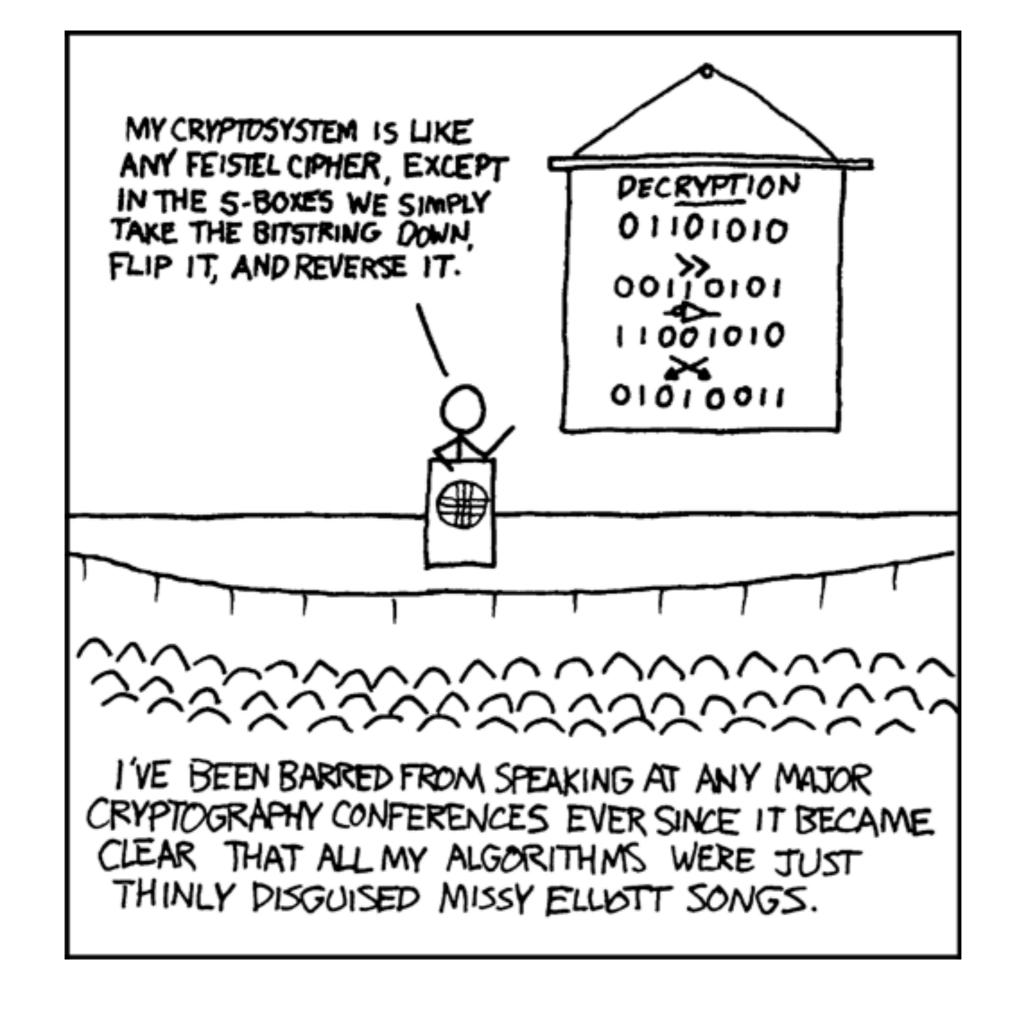
CS 465 Computer Security

AES



Programming Lab #1

- Implement AES
- Use the FIPS 197 spec as your guide
 - Avoid looking at code on the Internet
 - Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
 - The standard provides programming language independent pseudo-code
 - 20 pages at the end of the spec has complete, step-by-step debugging information to check your solution

Resources

- FIPS 197 Spec
- Wikipedia articles on AES and Finite Field Arithmetic
- YouTube video
- Stick figure guide to AES

C Data Structures

```
/* byte — 8 bits*/

    uint8 t b;

                           /* word — 16 bits */

    uint16 t w;

                            /* word — 32 bits */

    uint32 t l;

    uint8_t state[4][Nb]; /* two dimensional array */

    void method(uint8_t in[]); /* params */
```

void method(uint8_t state[4][Nb]);

Binary Operations

Operation	Name	Example	Result
a & b	and	0x53 & 0x31	0x11
a b	or	0x53 0x31	0x73
a ^ b	xor	0x53 ^ 0x31	0x62
a << n	left shift	0x53 << 1	0xa6
a >> n	right shift	0x53 >> 1	0x29

AES Parameters

- Nb Number of columns in the State
 - For AES, Nb = 4
- Nk Number of 32-bit words in the Key
 - For AES, Nk = 4, 6, or 8
- Nr Number of rounds (function of Nb and Nk)
 - For AES, Nr = 10, 12, or 14

Block Cipher

- AES is a block cipher encryption and decryption on a 4x4 block of bytes
- Intermediate representations of the cipher are stored in the state variable
- Bytes stored into and taken out of the state in column order
- See Figure 3

Let's look at the big picture...

See Figure 3 for State
See Figure 5 for Cipher

Overview

- Finite Field Arithmetic
- Key Expansion
- Transformations
 - AddRoundKey
 - SubBytes
 - ShiftRows
 - MixColumns

Finite Field Arithmetic

Finite Field Arithmetic

- Finite Fields are a mathematical concept.
- They consist of a finite set, an addition (+) operator, and a multiplication (*) operator.
- Addition and multiplication can be defined as any operation
- In AES, finite field arithmetic is done using a byte (8-bits, unsigned)

Finite Fields

- AES uses the finite field GF(28)
 - Galois Field finite set of numbers with defined operations (addition, multiplication)
 - Polynomials of degree 8
 - $\cdot \quad b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \\$
 - $\{b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0\}$
- Byte notation for the element: $x^6 + x^5 + x + 1$
 - $0x^7 + 1x^6 + 1x^5 + 0x^4 + 0x^3 + 0x^2 + 1x + 1$
 - {01100011} binary
 - {63} hex

Finite Field Arithmetic

Addition (XOR)

•
$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$$

- $\{01010111\} \oplus \{10000011\} = \{11010100\}$
- $\{57\} \oplus \{83\} = \{d4\}$
- Multiplication is tricky
 - Study section 4.2 in the spec
 - In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult to interpret.

Finite Field Multiplication (·)

10101101111001

```
\{57\} \cdot \{83\} = \{c1\}
Step 1: multiply
                                                     Identical terms
                                                          cancel
(x^6 + x^4 + x^2 + x + 1)(x^7 + x + 1)
     = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1
     = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1
          1010111
         10000011
          1010111
         1010111
101011100000
```

Finite Field Multiplication (·)

$$\{57\} \cdot \{83\} = \{c1\}$$

(Not the product of two polynomials)

Irreducible

Polynomial

Step 2: modulo

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \text{ modulo} (x^8 + x^4 + x^3 + x^4 + x^$$

Finite Field Multiplication (·)

$$\{57\} \cdot \{83\} = \{c1\}$$

(Not the product of two polynomials)

Step 2: modulo

Irreducible Polynomial

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \text{ modulo} (x^8 + x^4 + x^3 + x + 1)$$

= $x^7 + x^6 + 1$

10101101111001 mod 100011011

^100011011

00100000011001

100011011

000011000001

Efficient Finite Field Multiply

- There's a better way
 - Patterned after the divide and conquer modular exponentiation algorithm (CS 312)
- xtime() very efficiently multiplies its input by {02}
 - It follows that multiplication by x (i.e., $\{00000010\}$ or $\{02\}$) can be implemented at the byte level as a left shift and a subsequent conditional bitwise XOR with $\{1b\}$.
 - This is the same as multiplying a polynomial by x what is the binary or hex representation of the polynomial x?
- Multiplication by higher powers can be accomplished through repeated applications of xtime()

Efficient Finite Field Multiply

```
Example: {57} • {13}

{57} • {02} = xtime({57}) = {ae}

{57} • {04} = xtime({ae}) = {47}

{57} • {08} = xtime({47}) = {8e}

{57} • {10} = xtime({8e}) = {07}
```

These are hexadecimal numbers! 10 in hex is 16 in decimal.

$$\{57\} \bullet \{13\} = \{57\} \bullet (\{01\} \oplus \{02\} \oplus \{10\})$$

$$= (\{57\} \bullet \{01\}) \oplus (\{57\} \bullet \{02\}) \oplus (\{57\} \bullet \{10\})$$

$$= \{57\} \oplus \{ae\} \oplus \{07\}$$

$$= \{fe\}$$

Efficient Finite Field Multiply

Turn this into a method:

```
{57} • {1} = {57}
{57} • {2} = xtime({57}) = ({0101 0111} << 1) = {1010 1110} = {AE} (high bit set? no)</li>
{57} • {4} = xtime({AE}) = ({1010 1110} << 1) = {1 0101 1100} = {15C} (high bit set? yes)</li>
drop high bit and xor {1B} (e.g. xor {11B}) = {15C} ⊕ {11B} = {47}
{57} • {8} = xtime({47}) = {0100 0111} << 1 = {8E} (high bit set? no)</li>
{57} • {10} = xtime({8E}) = ({1000 1110} << 1) ⊕ {11B} = {07}</li>
{57} * {13} = {57} ⊕ {AE} ⊕ {07}
```

Key Expansion

5.2

Figure 11

Definition of SubWord()

Sbox

Definition of RotWord()

Rcon

AddRoundKey

5.1.4

State is bytes, key schedule is words

SubBytes

5.1.1

Figure 6

Figure 7

ShiftRows

5.1.2

Figure 8

MixColumns

5.1.3

Figure 9

Equations above Figure 9

Finite Field Multiply