
CS 465
Computer Security

AES

Daniel Zappala, adapted from Kent Seamons
Fall 2018

• Implement AES

• Use the FIPS 197 spec as your guide

• Avoid looking at code on the Internet

• Challenge yourself to implement the algorithm based on sources mentioned
in the lab specification

• The standard provides programming language independent pseudo-code

• 20 pages at the end of the spec has complete, step-by-step debugging
information to check your solution

Programming Lab #1

• FIPS 197 Spec

• Wikipedia articles on AES and Finite Field Arithmetic

• YouTube video

• Stick figure guide to AES

Resources

C Data Structures

• uint8_t b; /* byte — 8 bits*/

• uint16_t w; /* word — 16 bits */

• uint32_t l; /* word — 32 bits */

• uint8_t state[4][Nb]; /* two dimensional array */

• void method(uint8_t in[]); /* params */

• void method(uint8_t state[4][Nb]);

Binary Operations

Operation Name Example Result

a & b and 0x53 & 0x31 0x11

a | b or 0x53 | 0x31 0x73

a ^ b xor 0x53 ^ 0x31 0x62

a << n left shift 0x53 << 1 0xa6

a >> n right shift 0x53 >> 1 0x29

• Nb – Number of columns in the State

• For AES, Nb = 4

• Nk – Number of 32-bit words in the Key

• For AES, Nk = 4, 6, or 8

• Nr – Number of rounds (function of Nb and Nk)

• For AES, Nr = 10, 12, or 14

AES Parameters

Block Cipher

• AES is a block cipher — encryption and decryption on a
4x4 block of bytes

• Intermediate representations of the cipher are stored in
the state variable

• Bytes stored into and taken out of the state in column
order

• See Figure 3

Let’s look at the big picture…

See Figure 3 for State

See Figure 5 for Cipher

Overview

• Finite Field Arithmetic

• Key Expansion

• Transformations

• AddRoundKey

• SubBytes

• ShiftRows

• MixColumns

Finite Field Arithmetic

Finite Field Arithmetic

• Finite Fields are a mathematical concept.

• They consist of a finite set, an addition (+) operator, and a
multiplication (*) operator.

• Addition and multiplication can be defined as any
operation

• In AES, finite field arithmetic is done using a byte (8-bits,
unsigned)

• AES uses the finite field GF(28)

• Galois Field — finite set of numbers with defined operations (addition, multiplication)

• Polynomials of degree 8

• b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

• {b7, b6, b5, b4, b3, b2, b1, b0}

• Byte notation for the element: x6 + x5 + x + 1

• 0x7 + 1x6 + 1x5 + 0x4 + 0x3 + 0x2 + 1x + 1

• {01100011} – binary

• {63} – hex

Finite Fields

• Addition (XOR)

• (x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2

• {01010111} ⊕ {10000011} = {11010100}

• {57} ⊕ {83} = {d4}

• Multiplication is tricky

• Study section 4.2 in the spec

• In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult
to interpret.

Finite Field Arithmetic

{57} · {83} = {c1}

Step 1: multiply 

(x6 + x4 + x2 + x +1) (x7 + x +1)  

	 = x13 + x11 + x9 + x8 + x7 + x7 + x5 + x3 + x2 + x + x6 + x4 + x2 + x +1
 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1

 1010111
* 10000011
 ————————
 1010111
 1010111
101011100000
——————————————
10101101111001

Finite Field Multiplication (•)

Identical terms
cancel

{57} · {83} = {c1}

Step 2: modulo

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 modulo (x8 + x4 + x3 + x +1)
	 = x7 + x6 +1

 _ x5_+ x3___________________________
x8 + x4 + x3 + x +1 | x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1
 x13 + x9 + x8 + x6 + x5

 ——————————————————-

 x11 + x4 + x3 +1
 x11 + x7 + x6 + x4 + x3

 ——————————————————————

 x7 + x6 + +1

Finite Field Multiplication (•)

Irreducible
Polynomial

(Not the product of two polynomials)

{57} · {83} = {c1}

Step 2: modulo

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 modulo (x8 + x4 + x3 + x +1)
	 = x7 + x6 +1

 10101101111001 mod 100011011
^100011011
 ——————————————
 00100000011001
^ 100011011
 ——————————————
 000011000001

Finite Field Multiplication (•)

Irreducible
Polynomial

(Not the product of two polynomials)

• There’s a better way

• Patterned after the divide and conquer modular exponentiation algorithm (CS 312)

• xtime() — very efficiently multiplies its input by {02}

• It follows that multiplication by x (i.e., {00000010} or {02}) can be implemented at
the byte level as a left shift and a subsequent conditional bitwise XOR with {1b}.

• This is the same as multiplying a polynomial by x — what is the binary or hex
representation of the polynomial x?

• Multiplication by higher powers can be accomplished through
repeated applications of xtime()

Efficient Finite Field Multiply

Example: {57} • {13}

{57} • {02} = xtime({57}) = {ae}

{57} • {04} = xtime({ae}) = {47}

{57} • {08} = xtime({47}) = {8e}

{57} • {10} = xtime({8e}) = {07}

{57} • {13} = {57} • ({01} ⊕ {02} ⊕ {10})

	 = ({57} • {01}) ⊕ ({57} • {02}) ⊕ ({57} • {10})

	 = {57} ⊕ {ae} ⊕ {07}

 = {fe}

Efficient Finite Field Multiply

These are hexadecimal numbers!
10 in hex is 16 in decimal.

Efficient Finite Field Multiply

Turn this into a method:

{57} ∙ {1} = {57}

{57} · {2} = xtime({57}) = ({0101 0111} << 1) = {1010 1110} = {AE} (high bit set? no)

{57} · {4} = xtime({AE}) = ({1010 1110} << 1) = {1 0101 1100} = {15C} (high bit set? yes)

 drop high bit and xor {1B} (e.g. xor {11B}) = {15C} ⊕ {11B} = {47}

{57} · {8} = xtime({47}) = {0100 0111} << 1 = {8E} (high bit set? no)

{57} · {10} = xtime({8E}) = ({1000 1110} << 1) ⊕ {11B} = {07}

{57} * {13} = {57} ⊕ {AE} ⊕ {07}

Key Expansion

5.2

Figure 11

Definition of SubWord()

Sbox

Definition of RotWord()

Rcon

AddRoundKey

5.1.4

State is bytes, key schedule is words

SubBytes

5.1.1

Figure 6

Figure 7

ShiftRows

5.1.2

Figure 8

MixColumns

5.1.3

Figure 9

Equations above Figure 9

Finite Field Multiply

