CS 465 Computer Security

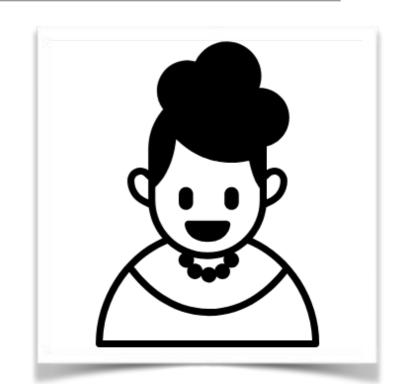
Terminology

Is This System Secure?

Common question, but the wrong question to ask

Security begins by understanding the attackers and the threats

- Secure from whom?
- Secure from what?


What does it mean to be 'secure'?
What are the tradeoffs in making a system 'more secure'?
How this system be attacked?

Good Guys - Alice and Bob

Traditional names used in the security literature

Alice and Bob attempt to share information

- Exchange secure email or chat messages
- A customer at a website

Bad Guys

Eve

Eavesdropper – passive attacker

Mallory

Active attacker

Trudy

Intruder

What Kinds of Attacks?

- STRIDE Threat Model (Microsoft)
 - Spoofing user identify
 - Tampering
 - Repudiation
 - Information disclosure (privacy breach or data leak)
 - Denial of service (DoS)
 - Elevation of privilege

STRIDE example

- WiFi Access Point
 - Spoofing sure that's the right AP?
 - Tampering Data can be changed as it transits?
 - Repudiation prove it was me that connected?
 - Information disclosure my password or bank pin?
 - Denial of service (DoS) can I even connect?
 - Elevation of privilege can I reconfigure the AP

WiFi Pineapple

What Kinds of Defenses?

CIA

Confidentiality

Prevent unauthorized access to data

Integrity

Detect unauthorized modification/creation of data

Availability

- Prevent a denial of service attack
- Data is delivered in a reasonable time frame
- System is available when a service is requested

Example: Secure Email

Who are the attackers?

What kind of attacks?

- Confidentiality eavesdropping, mail server scanning, active attackers (e.g. hacking mail server)
 - End-to-end encryption
- Integrity changing the content
 - Digital signature
- Availability DDoS mail server, START/TLS downgrade attack

Threat Model

Decide on the threats that are relevant in a given scenario

Analyze how well the system thwarts those threats

Example

- Email
- Attack
 - Eavesdropping
- Solutions
 - HTTPS
 - End-to-end encryption (S/MIME, PGP)

Access Control

Authentication

Determining if this is really Alice or Bob

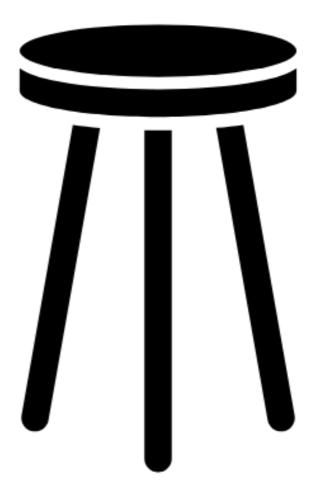
Authorization

 Does the user have authorization to complete a requested action?

Repudiation (Deniability) / Non-Repudiation

Ability to later deny that an action took place, or ability to prevent denying an action took place

Involves cryptographic evidence that will stand up in court


- a Venmo Transfer
- a Vote
- a Whistleblower leaking info

Three Facets to Security

Prevention

Detection

Reaction

Weakest Link Property

A security system is only as strong as its weakest link

Principle of Least Privilege

A process or system or user should have enough permissions to do just what it needs to do and no more

The original formulation is from Jerome Saltzer:^[6]

Every program and every privileged user of the system should operate using the least amount of privilege necessary to complete the job.

— Jerome Saltzer, Communications of the ACM

Saltzer, Jerome H. (1974). "Protection and the control of information sharing in multics". Communications of the ACM. 17 (7): 388–402.

e.g. An api used to display information may not need to be able to update that info, or maybe only update viewing statistics

Security Through Obscurity

Reliance on the secrecy of the design or implementation as the main method of providing security for a system or component of a system

Examples

- Key under a rock in the garden
- Obscure URL
- Closed source code with code obfuscation

Related concept: Security Through Minority

Use an unpopular tool

Attack Trees

An ad-hoc method to reasoning about the threats to a system

Hierarchical tree with the root node as the goal of an attacker

- Child nodes contain all the ways to accomplish the goal of the parent node
- Probability associated with each node

Defense In Depth

Redundancy in security - Assume there will always be partial failure

Multiple overlapping layers - Belt AND Suspenders

Examples:

- Lock and Deadbolt
- Firewall and Antivirus and Disk Encryption and ...