CS 465 Computer Security

RSA

Recap

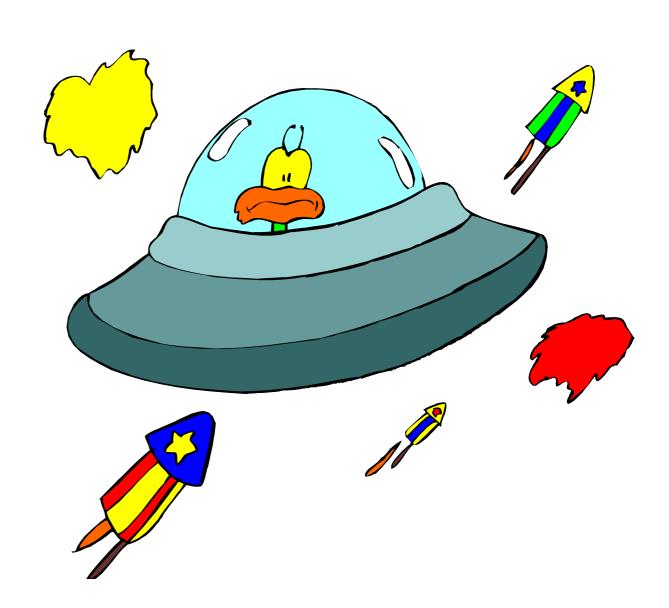
- Number theory
 - What is a prime number?
 - What is prime factorization?
 - What is a GCD?
 - What does relatively prime mean? What does co-prime mean?
 - What does congruence mean?
 - What is the additive inverse of 13 % 17 ?
 - What is the multiplicative inverse of 7 % 8?

Recap: Diffie-Hellman

- You're trapped in your spaceship
- You have enough energy to send a single message to your HQ
- You have:
 - HQ's public DH values
 - g=5, p = 875498279345...

$$g^a = 32477230478...$$

- Your AES implementation from Labs #1 & 2
- An arbitrary precision calculator
- How can you construct your message so that it will be safe from eavesdroppers?

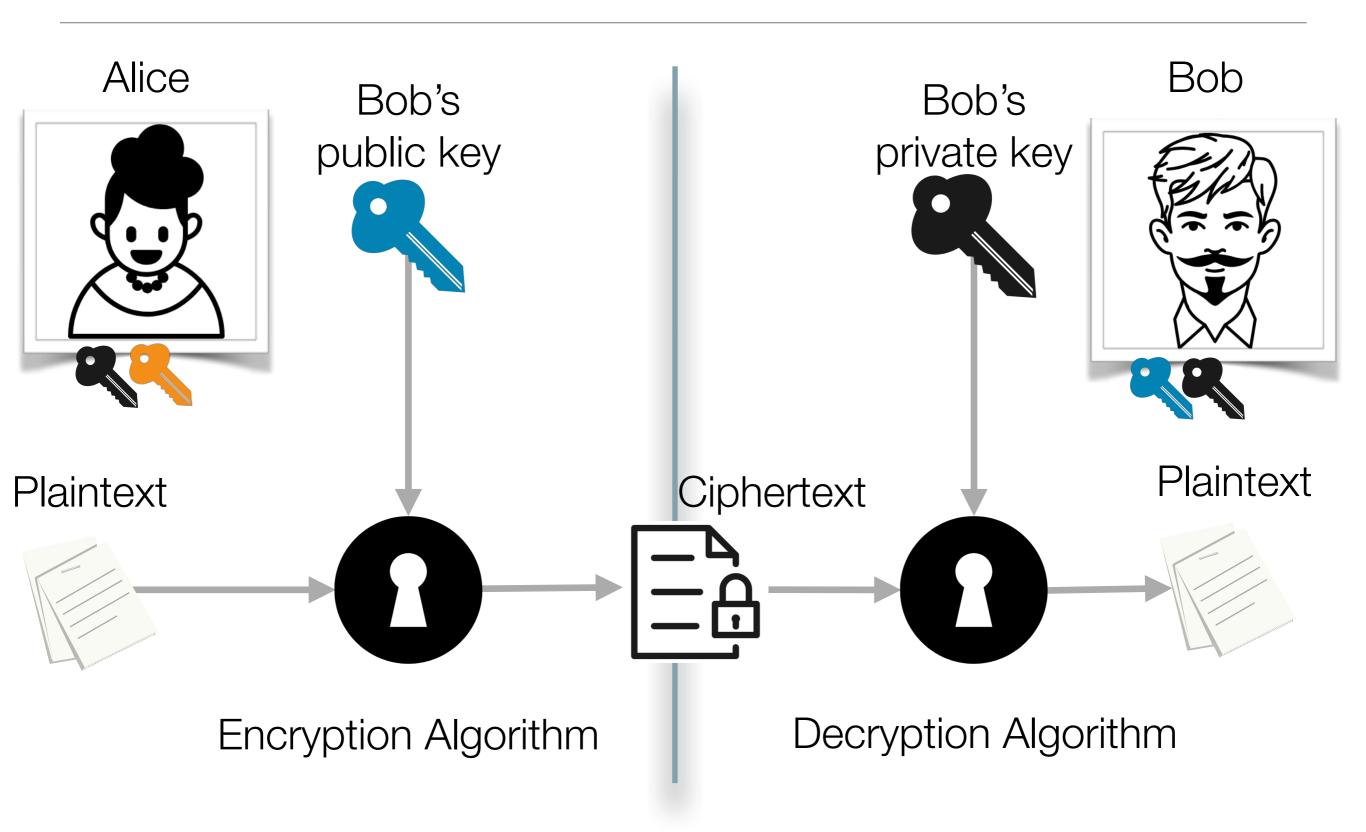


Public Key Encryption

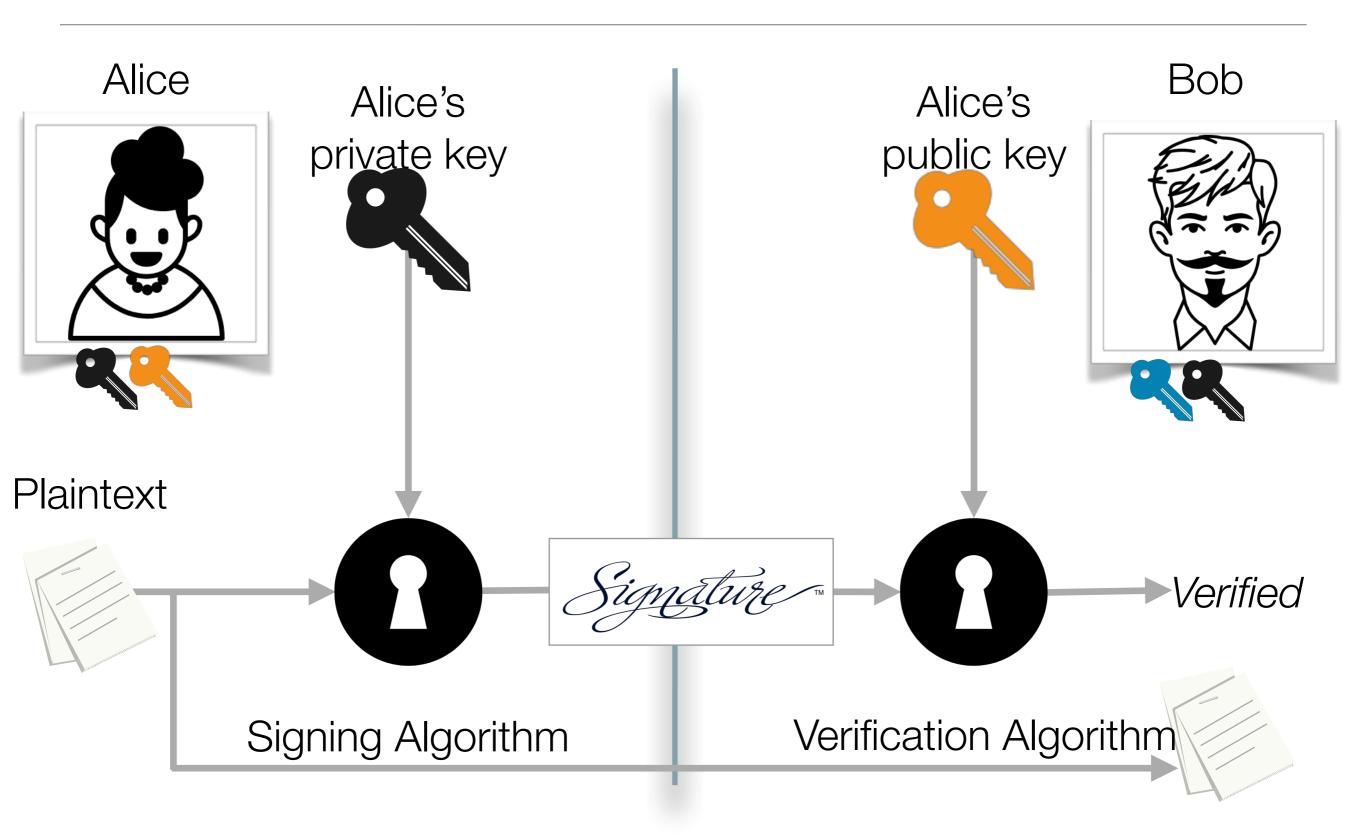
Public Key Terminology

- Public Key
- Private Key
- Digital Signature
- You encrypt with a public key, and you decrypt with a private key
- You sign with a private key, and you verify with a public key

Public Key Encryption Model



Public Key Digital Signature Model



History of RSA

- Invented in 1977 by Ron Rivest, Adi Shamir, Leonard Adleman
- Patented until 2000
- It's withstood years of extensive cryptanalysis
 - Suggests a level of confidence in the algorithm
 - Example of successful attacks against implementations
 - Side channel attacks
 - Poor random number generators

Textbook RSA

- m = message
- c = ciphertext
- e = public exponent
- d = private exponent
- n = modulus
- RSA Encryption: c = me % n
- RSA Decryption: m = c^d % n

Why Public Key Encryption Works

The Math Behind RSA

- RSA encrypt/decrypt operations are simple
- The math to get to the point where these operations work is not so simple (at first)
 - Fermat's little theorem
 - Euler's generalization of Fermat's little theorem

Fermat's Little Theorem

- If
 - p is prime
 - a is not divisible by p
- Then Fermat's theorem states
 - $a^{p-1} \equiv 1 \pmod{p}$ (Because $a^p \equiv p \pmod{p}$)
- This serves as the basis for
 - Fermat's primality test
 - Euler's generalization

Pierre de Fermat (1601-1655)

Euler's Generalization of Fermat's Little Theorem

- Euler said
 - $a^{\varphi(n)} \equiv 1 \pmod{n}$

• $\varphi(n)$

- Euler's totient function
- The number of values less than n which are relatively prime to n
- Multiplicative group of integers (Z_n^*)
- RSA is interested in values of n that are the product of two large prime numbers p and q

n doesn't need to be prime a must still be co-prime to n

Leonhard Euler (1707-1783)

Computing $\varphi(n)$ in RSA

• When p * q = n, and p and q are prime, what is $\varphi(n)$?

(p-1)(q-1)

- $\phi(n) =$ the number of integers between 0 and n that are co-prime to n
- Proof (When p * q = n)
 - Observations
 - 1) there are p-1 multiples of q between 1 and n
 - 2) there are q-1 multiples of p between 1 and n

These multiples are not co-prime to n

Definition:

 $\phi(n)$ = # of values between 0 and n minus # of values between 0 and n not relatively prime to n

$$\phi(n) = [n-1] - [(p-1) + (q-1)]$$

$$= [pq-1] - (p-1) - (q-1))$$

$$= pq - p - q + 1$$

$$= (p-1)(q-1)$$

Why not?

RSA

- Euler said: $a^{\varphi(n)} \equiv 1 \pmod{n}$
 - $m^{(p-1)(q-1)} \equiv 1 \pmod{n}$
- Notice: $m^{(p-1)(q-1)} * m = m^{(p-1)(q-1)+1} = m \pmod{n}$
 - $m\varphi^{(n)+1} \equiv m \pmod{n}$
- Let $e^*d = k^*\phi(n) + 1$
 - Then $e^*d = 1 \pmod{\varphi(n)}$
 - Therefore $m^{\text{ed}} \equiv m^{k^* \varphi(n) + 1} \equiv m^{\varphi(n)} * m^{\varphi(n)} * \dots * m \equiv m \pmod{n}$
- RSA encryption: me = c (mod n)
- RSA decryption: $c^d = m \pmod{n}$

Why is RSA secure?

If you could factor n into p and q, then you know $\varphi(n)=(p-1)(q-1)$, and now you can easily calculate d (e is public).

This is called the "trap door" in RSA. Knowing the prime factors is what makes it easy to decrypt.

It's hard to factor large primes and hard to find d without knowing the factorization.

How To Use Public Key Encryption

Steps for RSA Encryption

- Select p, q (large prime numbers)
- n=p*q
- $\varphi(n) = (p-1)(q-1)$
- Select integer e where e is <u>relatively prime</u> to $\varphi(n)$
 - Common values for e are 3 and 65537. Why?
- Calculate d, where $d^*e = 1 \pmod{\varphi(n)}$
- Public key is KU = {e, n}
- Private key is KR = {d, n}

RSA Usage

- Given $m^e = c \pmod{n}$ and $c^d = m \pmod{n}$
 - What restrictions should be placed on m?
- For bulk encryption (files, emails, web pages, etc)
 - Never, never, never encrypt data directly using RSA inefficient and insecure
 - Always use symmetric encryption for data, and use RSA to encrypt the symmetric key, using a secure padding scheme
- Digital signatures
 - Do not sign the entire document too slow
 - Sign (encrypt) a hash of the document using the private key

How To Calculate RSA Values

How do we get p, q, e, and d?

- What is p?
 - How do we get it?
- What is q?
 - How do we get it?
- · What is e?
 - How do we get it?
 - What is the relationship of e and (p-1)(q-1)?
- · What is d?
 - How do we get it?

Recap

- $n=p^*q$ -> $\phi(n) = (p-1)(q-1)$
- Choose $e^*d = K \varphi(n)+1$ -> $e^*d = 1 \pmod{\varphi(n)}$
- $m^{ed} \equiv m^{k^* \phi(n) + 1} \equiv m^{\phi(n)} * m^{\phi(n)} * \dots * m \equiv m \pmod{n}$

- Select integer e where e is <u>relatively prime</u> to $\varphi(n)$
- Calculate d, where $d^*e = 1 \pmod{\varphi(n)}$

Calculating d

- Goal: find d such that ed = 1 (mod $\phi(n)$) Use the extended Euclidean algorithm
- Based on the fact that GCD can be defined recursively
 - If x > y, then GCD(x,y) = (recursively) GCD(y, x-y)
 - Also if x > y, then GCD(x,y) =(recursively) GCD(y, x%y)
- GCD can also be used as follows:
 - Suppose ax + by = gcd(x,y)
 - If x is the modulus, and gcd(x,y) = 1
 - Then ax + by = 1 and b is y^{-1}

Calculating d

- Goal: find d such that ed = 1 (mod $\varphi(n)$)
- Use the extended Euclidean algorithm
 - Calculates x and y such that ax+by=gcd(a,b)
 - Let a=e, b= φ (n). gcd(e, φ (n))=1 because they are co-prime
 - Then you have: $ex+\phi(n)y=1$
 - Take this modulo φ(n) and you get: ex≡1 (mod φ(n))
 - x=d (if x is negative, simply add $\varphi(n)$)

Extended Euclidean Algorithm

- Let p = 5, q = 11, n = 55, e=17, and $\phi(n)=40$
 - 17d+40k=1
 - $40=2\times17+6$ GCD with remainder
 - $17=2\times6+5$ GCD with remainder
 - $6=1\times5+1$ (stop at remainder 1)
- Rewrite
 - $6-1 \times 5=1$

Substitute

•
$$(40-2\times17)-1\times(17-2\times(40-2\times17))=1$$

- Simplify
 - $(-7)\times17+3\times40=1$
 - $d=-7 \rightarrow add 40$ (the modulus) and get d=33
- Public key = $\{17,55\}$
- Private key = {33,55}

$$p=5$$
, $q=11$, $e=3$

```
p=5, q=11, e=3
n = p*q = 55
\varphi(n) = (p-1)(q-1) = 4*10 = 40
Calculate d
3*d + 40*k = 1
40 = 13*3 + 1
                          (no substitution steps needed)
(-13)*3 + 40 = 1
d = -13 + 40 = 27
Public Key = \{3, 55\}
Private Key = \{27, 55\}
```

An Exception!

GCD(e, φ (n)) must be 1

- · Be sure to check, otherwise you need a new e
- Easy algorithm:
 - GCD(x, y) = GCD(y, x %y) if x > y (recursive computation)
- Example
 - GCD(40, 3) = GCD(3, 1) = 1
 - GCD(120,3) = 3!

```
p=11, q=13, 2 < e <= 8
n = p*q = 143
\varphi(n) = (p-1)(q-1) = 10*12 = 120
Calculate d
GCD (\phi(n), e) = GCD(120, 3) = 3, GCD(120, 5) = 5, GCD(120, 7) = GCD(17, 1) = 1
7*d + 120*k = 1
120 = 17*7 + 1
                             (no substitution steps needed)
(-17)*7 + 120*1 = 1
d = -17 + 120 = 103
Public Key = \{7, 143\}
Private Key = \{103, 143\}
```

More Practice

$$p=5$$
, $q=13$, $e=5$

```
p=5, q=13, e=5
n = p*q = 65
\varphi(n) = (p-1)(q-1) = 4*12 = 48
Calculate d
GCD (\phi(n), e) = GCD(48, 5) = GCD(5, 3) = GCD(3, 2) = 1
                            (notice how these match the substitution steps)
5*d + 48*k = 1
48 = 9*5 + 3
5 = 1*3 + 2
3 = 1*2 + 1
(substitute)
3 - 1*2 = 1
3 - 1*(5 - 1*3) = 1
48 - 9*5 - 1*(5 - 1*(48 - 9*5)) = 1
48 - 9*5 - 1*5 + 1*48 - 9*5 = 1
2*48 - 19*5 = 1
d = -19 + 48 = 29
Public Key = \{5, 65\}
Private Key = \{29, 65\}
```

```
p=17, q=11, e=7
n = p*q = 187
\varphi(n) = (p-1)(q-1) = 16*10 = 160
Calculate d
GCD (\phi(n), e) = GCD (160, 7) = GCD (7,6) = 1
7*d + 160*k = 1
160 = 22*7 + 6
7 = 1*6 + 1
(substitute)
7 - 1*6 = 1
7 - 1*(160 - 22*7) = 1
7 - 160 + 22*7 = 1
23*7 - 1*160 = 1
d = 23
Public Key = \{7, 187\}
Private Key = \{23, 187\}
```