
CS 465
Computer Security

Buffer Overflow

Daniel Zappala, adapted from Kent Seamons and Tim van der Horst
Fall 2018

Buffer Overflow

• A common security vulnerability

• Root cause

• Unsafe programming languages

• The problem would disappear if we could write correct code

• What areas of process memory are vulnerable to a buffer overflow?

• Stack

• Heap

• Code/Data

Vulnerable Code Examples

This code snippet caused the Morris Worm (1988)

 char buf[20];

 gets(buf);

Vulnerable Code Examples

void foo(char *input) {

 //make a local working copy

 char buf[1024];

 strcpy(buf, input);

}

Stack Smashing

Stack Smashing Attack

• A specific kind of buffer overflow attack

• During a function call, the return address is pushed on the stack

• An attacker overflows a buffer (local variable)

• The return address on the stack is overwritten to point to an existing
function or to injected code

• During the function return the instruction pointer is set to the new
return address value stored on the stack, not the original return
address that was pushed on the stack as the function was called

Limitations

• Usually there is only one write operation that is vulnerable

• The attacker has one operation to overwrite the return address

• The stack frame is usually corrupted so that the program crashes
sometime after the buffer is overflowed

• But the attack may be executed before the crash occurs

• Remote attacker doesn’t know the exact address location of the injected
attack code

• NOP sled helps create a window of opportunity

How does stack smashing work?

• Let’s take a tour through Smashing the Stack for Fun
and Profit

• published by Aleph One in 1996 in Phrack — an online magazine with
a long history of discussing hacking techniques

• prior to this article, buffer overflow was a known weakness, but not
widely exploited — afterward attacks became rampant

• http://www.phrack.org/issues/49/14.html#article

https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Phrack
http://www.phrack.org/issues/49/14.html#article

Process Memory Organization

• text — contains code, read only

• data — global or static variables that are
initialized

• bss — global or static variables that are
uninitialized

• heap — dynamically allocated memory,
shared by program, shared libraries

• stack — function calls and local variables

The Stack Region

• push eax

• sub esp, 4

• mov [esp], eax

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

The Stack Region

• pop eax

• ov eax, [esp]

• add esp, 4

Stack Frames

Stack Frames

The Basic Idea

• overwrite a string variable on
the stack (imagine sum is
instead a string)

• writes go toward high
addresses

• if you keep going, you can
overwrite the return address!
and point it to some code in
the area you wrote!

Why do we have this problem?

• Because C chose to represent strings as null terminated
instead of (base, bound) tuples

• Because strings grow up and stacks grow down

• Because we use Von Neumann architectures that store
code and data in the same memory

Now we’re going to do this with assembly

Back to Fun and Profit …

• Memory addressed in words, words are 4 bytes (32 bits)

• 5 byte buffer = 8 bytes (2 words), 10 byte buffer = 12 bytes (3 words)

Buffer Overflow

• strcpy will copy all 255 characters
into buffer, overwriting the sfp
(esp), return address, and even
*str

• A is 0x41

• return address is now 0x41414141

Overwriting the return address

• return address is 12 bytes
away

• buffer1 is 8 bytes, sfp is 4
bytes

• by overwriting return
address, we “jump” the
x=1 assignment

Overwriting the return address

• return address is 0x80004a8, we want to jump past
assignment at 0x80004ab, next instruction we want is at
0x80004b2

Shell code

• So now that we know that we can modify the return address and the
flow of execution, what program do we want to execute?

• In most cases we’ll simply want the program to spawn a shell. From
the shell we can then issue other commands as we wish.

• But what if there is no such code in the program we are trying to
exploit? How can we place arbitrary instruction into its address
space?

• The answer is to place the code with are trying to execute in the
buffer we are overflowing, and overwrite the return address so it
points back into the buffer.

Shell code

• S is shell code we want to execute

• assume stack starts at 0xFF

Shell code

save frame pointer, make stack pointer
the new frame pointer, allocate space
for local variables

copy address of “/bin/sh” into
local variable for name[0]

copy zero into
local variable for name[1]

Shell code

push execve arguments onto the stack
in reverse order, using the eax register for
the address of name and name[0]

call the library procedure
for execve

Execve
save frame pointer, make stack pointer
the new frame pointer, push
ebx onto stack

copy 0xb (11 decimal) into eax,
index into syscall table, 11 is execve 
 
copy address of “/bin/sh”
into ebx

copy address of name[]
into ecx

copy null into edx

change into kernel mode

• this is how the execve call operates — eax contains the system call, ebx
contains the program, ecx contains the arguments, and edx indicates the
arguments are done — the kernel switch executes the system call

Shell code

Exit

save frame pointer, make stack pointer
the new frame pointer, push ebx  
onto the stack

put 0x1 into eax

put exit code into ebx

change into kernel mode

What we need

Putting it into memory

• we don’t know the address for the code or the string

• get around this by using jmp and call instructions, which use relative
addressing

• jmp: go to a new address and execute from there

• call: same, but first push return address of next instruction on the stack (which
happens to be the string!)

Putting it into memory

• J = jump instruction

• S = shell code

• C = call instruction

• s = string (containing /bin/sh)

Calculating the offsets

Testing it

• see original for converting shell code to hex using gdb and  
avoiding null bytes in shellcode

Doing it with a buffer overflow

fill large_string with the address of buffer,
which is where the shell code will be

copy shell code into beginning of
large_string — the bytes after the
shell code will have the address of buffer,
and one of these will overwrite the
return address

exploit the flaw

What about exploiting someone else’s code

• The previous example works because we are exploiting
our own code and know where the address of the buffer
variable will be.

• With someone else’s code, we don’t know this

• This is where the NOP sled is used

NOP sled

• N = NOP instructions (do nothing)

• S = shell code

• 0xDE = write an return address that you can (guess) will hit somewhere
into the NOP sled

• when program returns, it jumps into sled and slides into your shell code

Questions on Stack Smashing

• How does the stack normally operate during a function call/return?

• Where is the stack in memory?

• How do the base pointer (ebp) and stack pointer (esp) work?

• How are local variables placed on the stack?

• Describe how an attacker can inject code on the stack

• What is a NOP sled and how/why is it used in a stack smashing
attack?

• What are the requirements for the format of the injected code?

Defenses

Defenses

• Write correct code

• Avoid vulnerable functions

• Audit code – use analysis tools

• Fuzz testing

• Non-executable stack

• Kernel patches make the stack non-executable in 1997

• Bypassable — inject shell code into the heap, point return address at shell
code in the heap

Defenses

• Array bounds checking

• Compile time or run-time checks

• Use a type-safe language

• Code pointer integrity checking

• Detect when a pointer is corrupted

• Canaries

• Address space randomization (ASLR)

• randomize locations of program in memory

Canary — StackGuard 1998

• push a canary value onto the
stack so that, when it is
overwritten, the OS can tell that
a buffer has been overflowed

• check the canary before the
protected region is used
(before the function is returned)

• written in a few days by one
intern

ftp://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf

ftp://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf

Terminator Canary

• A value composed of four different string terminators (CR, LF, NULL, -1)

• 0x000aff0d

• Most buffer overflows use string operations, which are terminated by these
string terminators

• An attacker can write the return information but then it won’t have a terminator
(because this comes before the return information)

• Attacker needs a second overflow to reconstruct the canary in the right location

• Memory copy operations (which don’t end with string terminators) would
succeed

Random Canary

• Initialized to a different random value each time the
program is run

• Canary value must be stored in memory somewhere, and
thus needs write access

• The attacker could read it from the stack, but this is
difficult

• Detects any buffer overflows that make sequential writes

Random XOR Canary

• Modify some of the saved control information (e.g. return
address) by XORing with canary value

• Might also detect random-access memory writes into the
protected region

Other Defenses

• StackShield

• copy valid return addresses to safe memory and then check on function return

• Libsafe

• armored variants of the standard string library functions

• does a plausibility check on parameters to ensure they don’t point up the stack at a return
address

• Hardware

• numerous papers proposing slightly modified hardware to protect against stack smashing

• such hardware is non-existent :-)

Buffer Overflows Today

• Heap spray

• fill heap with many copies of the NOP sled and shell code, to defeat
ALSR

• there are projects that try to detect this, see for example https://
www.microsoft.com/en-us/research/project/detection-of-javascript-
based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-
us%2Fprojects%2Fnozzle%2F

• Will keep happening until people adopt type-safe languages
(Java, C#, Python, Ruby)

https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F

There are lots of other vulnerabilities and defenses
to tell you about … but they are another story

Integer Manipulation Vulnerabilities

• Three main integer manipulations that can lead to security
vulnerabilities

• Overflow and underflow

• Signed vs. unsigned errors

• Truncation

• Reviewing Code for Integer Manipulation Vulnerabilities

• http://msdn2.microsoft.com/en-us/library/ms972818.aspx

http://msdn2.microsoft.com/en-us/library/ms972818.aspx

