
Last Updated: Sep 7, 2017

• Implement AES
• Use the FIPS 197 spec as your guide

o Avoid looking at code on the Internet
o Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
o The standard provides programming language independent pseudo-code
o 20 pages at the end of the spec has complete, step-by-step debugging information to check your solution

Programming Lab #1

• Nb – Number of columns in the State
o For AES, Nb = 4

• Nk – Number of 32-bit words in the Key
o For AES, Nk = 4, 6, or 8

• Nr – Number of rounds (function of Nb and Nk)
o For AES, Nr = 10, 12, or 14

AES Parameters

• Convert to state array

• Transformations (and their inverses)
• AddRoundKey
• SubBytes
• ShiftRows
• MixColumns

• Key Expansion

AES methods

• See Flash demo URL on course Lectures page

Inner Workings

• AES uses the finite field GF(28)
o Polynomials of degree 8
o b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

• {b7, b6, b5, b4, b3, b2, b1, b0}

• Byte notation for the element: x6 + x5 + x + 1
o 0x7 + 1x6 + 1x5 + 0x4 + 0x3 + 0x2 + 1x + 1
o {01100011} – binary
o {63} – hex

• Has its own arithmetic operations
o Addition
o Multiplication

Finite Fields

• Addition (XOR)
o (x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2

o {01010111} Å {10000011} = {11010100}
o {57} Å {83} = {d4}

• Multiplication is tricky
o Study section 4.2 in the spec
o In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult to interpret.

Finite Field Arithmetic

(x6 + x4 + x2 + x +1) (x7 + x +1) =

x13 + x11 + x9 + x8 + x7 + x7 + x5 + x3 + x2 + x + x6 + x4 + x2 + x +1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1

and

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1 modulo (x8 + x4 + x3 + x +1)
= x7 + x6 +1.

Finite Field Multiplication (•)

These cancel out

Irreducible
Polynomial

• There’s a better way
o Patterned after the divide and conquer modular exponentiation algorithm (CS 312)
o xtime() – very efficiently multiplies its input by {02}

• This is the same as multiplying a polynomial by x
o think about what is the binary representation of the polynomial x?

• Figure out when the mod operation should occur.

• Multiplication by higher powers can be accomplished
through repeated applications of xtime()

Efficient Finite Field Multiply

Example: {57} • {13}
{57} • {02} = xtime({57}) = {ae}
{57} • {04} = xtime({ae}) = {47}
{57} • {08} = xtime({47}) = {8e}
{57} • {10} = xtime({8e}) = {07}

{57} • {13} = {57} • ({01} Å {02} Å {10})
= {57} • ({01} Å {02} Å {10})
= ({57} • {01}) Å ({57} • {02}) Å ({57} • {10})
= {57} Å {ae} Å {07}
= {fe}

Efficient Finite Field Multiply

Example: {57} • {13}
{57} • {02} = xtime({57}) = {ae}
{57} • {04} = xtime({ae}) = {47}
{57} • {08} = xtime({47}) = {8e}
{57} • {10} = xtime({8e}) = {07}

{57} • {13} = {57} • ({01} Å {02} Å {10})
= {57} • ({01} Å {02} Å {10})
= ({57} • {01}) Å ({57} • {02}) Å ({57} • {10})
= {57} Å {ae} Å {07}
= {fe}

Efficient Finite Field Multiply
These are hexadecimal numbers {xx}

{10} in hex is 16, not decimal 10!

See detailed multiplication example on the Lectures web page

