CS 465

Programming Lab \#1

- Implement AES
- Use the FIPS 197 spec as your guide
- Avoid looking at code on the Internet
- Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
- The standard provides programming language independent pseudo-code
- 20 pages at the end of the spec has complete, step-by-step debugging information to check your solution

AES Parameters

- Nb - Number of columns in the State
- For AES, Nb $=4$
- Nk - Number of 32-bit words in the Key
- For AES, Nk = 4, 6, or 8
- $\mathrm{Nr}-\mathrm{Number}$ of rounds (function of Nb and Nk)
- For AES, $\mathrm{Nr}=10,12$, or 14

AES methods

- Convert to state array
- Transformations (and their inverses)
- AddRoundKey
- SubBytes
- ShiftRows
- MixColumns
- Key Expansion

Inner Workings

- See Flash demo URL on course Lectures page

Finite Fields

- AES uses the finite field GF(2^{8})
- Polynomials of degree 8
- $b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$
- $\left\{b_{7}, b_{6}, b_{5}, b_{4}, b_{3}, b_{2}, b_{1}, b_{0}\right\}$
- Byte notation for the element: $x^{6}+x^{5}+x+1$
- $0 x^{7}+1 x^{6}+1 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+1 x+1$
- $\{01100011\}$ - binary
- $\{63\}$ - hex
- Has its own arithmetic operations
- Addition
- Multiplication

Finite Field Arithmetic

- Addition (XOR)
- $\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x^{4}+x^{2}$
- $\{01010111\} \oplus\{10000011\}=\{11010100\}$
- $\{57\} \oplus\{83\}=\{d 4\}$
- Multiplication is tricky
- Study section 4.2 in the spec
- In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult to interpret.

Finite Field Multiplication (•)

$$
\begin{aligned}
& \left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{7}+x+1\right)=\text { These cancel out } \\
& x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+x^{7}+x^{5}+x^{3}+x^{2}+x+x^{6}+x^{4}+x^{2}+x+1 \\
& =x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1
\end{aligned}
$$

and
$x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1$ modulo $\left(x^{8}+x^{4}+x^{3}+x+1\right)$ $=x^{7}+x^{6}+1$.

Efficient Finite Field Multiply

- There's a better way
- Patterned after the divide and conquer modular exponentiation algorithm (CS 312)
- xtime() - very efficiently multiplies its input by $\{02\}$
- This is the same as multiplying a polynomial by x
- think about what is the binary representation of the polynomial x ?
- Figure out when the mod operation should occur.
- Multiplication by higher powers can be accomplished through repeated applications of xtime()

Efficient Finite Field Multiply

```
Example: {57} \bullet {13}
    {57} \bullet {02} = xtime ({57}) ={ae}
    {57} \bullet {04} = xtime({ae})={47}
    {57} \bullet{08} = xtime ({47})={8e}
    {57} \bullet{10} = xtime({8e})={07}
{57} \bullet{13} ={57}\bullet({01}\oplus{02}\oplus{10})
    ={57} \bullet({01} }\oplus{02} \oplus{10%
    = ([57} & {01}) }\oplus({57} & {02}) \oplus({0T} ⿰{10}
    ={57}}\oplus{a\textrm{ae}}\oplus{0]
    = {fe}
```


Efficient Finite Field Multiply

$$
\begin{aligned}
& \text { Example: }\{57\} \bullet\{13\} \\
&\{57\} \bullet\{02\}=x \operatorname{time}(\{57\})=\{\mathrm{ae}\} \\
&\{57\} \bullet\{04\}=x \operatorname{time}(\{\mathrm{ae}\})=\{47\} \\
&\{57\} \bullet\{08\}=\operatorname{xtime}(\{47\})=\{8 \mathrm{e}\} \\
&\{57\} \bullet\{10\}=x \operatorname{xtime}(\{8 \mathrm{e}\})=\{07\}
\end{aligned}
$$

$$
\text { These are hexadecimal numbers }\{x x\}
$$

```
{57}\bullet{13} = {57}\bullet({01}\oplus{02}\oplus{10})
    = {57} \bullet ({01} }\oplus{02} \oplus{10}
```



```
    = {57}}\oplus{a\textrm{ae}}\oplus{0T
    = {fe}
```


See detailed multiplication example on the Lectures web page

