CS 465
 Computer Security

AES

Daniel Zappala, adaptec

Programming Lab \#1

- Implement AES
- Use the FIPS 197 spec as your guide
- Avoid looking at code on the Internet
- Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
- The standard provides programming language independent pseudo-code
- 20 pages at the end of the spec has complete, step-by-step debugging information to check your solution

Resources

- FIPS 197 Spec
- Wikipedia articles on AES and Finite Field Arithmetic
- YouTube video
- Stick figure guide to AES

C Data Structures

- uint8_t b; /* byte - 8 bits*/
- uint16_t w; /* word - 16 bits */
- uint32_t I; /* word - 32 bits */
- uint8_t state[4][Nb]; /* two dimensional array */
- void method(uint8_t in[]); /* params */
- void method(uint8_t state[4][Nb]);

Binary Operations

Operation	Name	Example	Result
a \& b	and	$0 \times 53 \& 0 \times 31$	0×11
a \| b	or	$0 \times 53 \mid 0 \times 31$	0×73
a ^ b	xor	$0 \times 53 \wedge 0 \times 31$	0×62
$a \ll n$	left shift	$0 \times 53 \ll 1$	0×66
$a \gg n$	right shift	$0 \times 53 \gg 1$	0×29

AES Parameters

- Nb - Number of columns in the State
- For $\mathrm{AES}, \mathrm{Nb}=4$
- Nk - Number of 32-bit words in the Key
- For AES, Nk = 4, 6, or 8
- Nr - Number of rounds (function of Nb and Nk)
- For AES, $\mathrm{Nr}=10,12$, or 14

Block Cipher

- AES is a block cipher - encryption and decryption on a 4×4 block of bytes
- Intermediate representations of the cipher are stored in the state variable
- Bytes stored into and taken out of the state in column order
- See Figure 3

Let's look at the big picture...

See Figure 3 for State

See Figure 5 for Cipher

Overview

- Finite Field Arithmetic
- Key Expansion
- Transformations
- AddRoundKey
- SubBytes
- ShiftRows
- MixColumns

Finite Field Arithmetic

Finite Field Arithmetic

- Finite Fields are a mathematical concept.
- They consist of a finite set, an addition (+) operator, and a multiplication (*) operator.
- Addition and multiplication can be defined as any operation
- In AES, finite field arithmetic is done using a byte (8-bits, unsigned)

Finite Fields

- AES uses the finite field GF(28)
- Galois Field - finite set of numbers with defined operations (addition, multiplication)
- Polynomials of degree 8
- $b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$
- $\left\{b_{7}, b_{6}, b_{5}, b_{4}, b_{3}, b_{2}, b_{1}, b_{0}\right\}$
- Byte notation for the element: $x^{6}+x^{5}+x+1$
- $0 x^{7}+1 x^{6}+1 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+1 x+1$
- $\{01100011\}$ - binary
- $\{63\}$ - hex

Finite Field Arithmetic

- Addition (XOR)
- $\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x^{4}+x^{2}$
- $\{01010111\} \oplus\{10000011\}=\{11010100\}$
- $\{57\} \oplus\{83\}=\{d 4\}$
- Multiplication is tricky
- Study section 4.2 in the spec
- In 4.2.1, a paragraph describes what your implementation will do. Study it. Difficult to interpret.

Finite Field Multiplication (•)

$\{57\} \cdot\{83\}=\{c 1\}$
Step 1: multiply
$\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{7}+x+1\right)$

Identical terms cancel

$=x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+x^{7}+x^{5}+x^{3}+x^{2}+x+x^{6}+x^{4}+x^{2}+x+1$
$=x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1$

1010111

* 10000011

1010111
1010111
101011100000

10101101111001

Finite Field Multiplication (•)

$\{57\} \cdot\{83\}=\{c 1\}$
Step 2: modulo
(Not the product of two polynomials)

Irreducible
Polynomial

$$
x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1 \text { modulo }\left(x^{8}+x^{4}+x^{3}+x+1\right)
$$

$$
=x^{7}+x^{6}+1
$$

$$
x^{8}+x^{4}+x^{3}+x+1 \int_{x^{13}+x^{5}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1}
$$

$$
x^{13}+\quad x^{9}+x^{8}+x^{6}+x^{5}
$$

$$
\begin{array}{lll}
\begin{array}{l}
x^{11}+ \\
x^{11}+
\end{array} & x^{7}+x^{6}+ & \begin{array}{l}
x^{4}+x^{3}+1 \\
x^{4}+x^{3}
\end{array} \\
\hline & x^{7}+x^{6}+ & +1
\end{array}
$$

Finite Field Multiplication (•)

$\{57\} \cdot\{83\}=\{c 1\}$

Step 2: modulo

Irreducible Polynomial
$x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1$ modulo $\left(x^{8}+x^{4}+x^{3}+x+1\right)$
$=x^{7}+x^{6}+1$
10101101111001 mod 100011011
^100011011
00100000011001
^ 100011011
000011000001

Efficient Finite Field Multiply

- There’s a better way
- Patterned after the divide and conquer modular exponentiation algorithm (CS 312)
- xtime() - very efficiently multiplies its input by \{02\}
- It follows that multiplication by x (i.e., \{00000010\} or \{02\}) can be implemented at the byte level as a left shift and a subsequent conditional bitwise XOR with \{1b\}.
- This is the same as multiplying a polynomial by x - what is the binary or hex representation of the polynomial x ?
- Multiplication by higher powers can be accomplished through repeated applications of xtime()

Efficient Finite Field Multiply

Example: $\{57\} \bullet\{13\}$

$$
\begin{aligned}
& \{57\} \bullet\{02\}=x \text { xime }(\{57\})=\{\text { ae }\} \\
& \{57\} \bullet\{04\}=x t i m e(\{a e\})=\{47\} \\
& \{57\} \bullet\{08\}=x t i m e(\{47\})=\{8 \mathrm{e}\} \\
& \{57\} \bullet\{10\}=x t i m e(\{8 \mathrm{e}\})=\{07\}
\end{aligned}
$$

These are hexadecimal numbers! 10 in hex is 16 in decimal.
$\{57\} \cdot\{13\}=\{57\} \bullet(\{01\} \oplus\{02\} \oplus\{10\})$

$$
\begin{aligned}
& =(\{57\} \cdot\{01\}) \oplus(\{57\} \bullet\{02\}) \oplus(\{57\} \bullet\{10\}) \\
& =\{57\} \oplus\{\mathrm{ae}\} \oplus\{07\} \\
& =\{\mathrm{fe}\}
\end{aligned}
$$

Efficient Finite Field Multiply

Turn this into a method:
$\{57\} \cdot\{1\}=\{57\}$
$\{57\} \cdot\{2\}=x t i m e(\{57\})=(\{01010111\} \ll 1)=\{10101110\}=\{\mathbf{A E}\}($ high bit set? no $)$
$\{57\} \cdot\{4\}=x t i m e(\{A E\})=(\{10101110\} \ll 1)=\{101011100\}=\{15 C\}$ (high bit set? yes) drop high bit and xor $\{1 B\}(e . g . \operatorname{xor}\{11 B\})=\{15 C\} \oplus\{11 B\}=\{47\}$
$\{57\} \cdot\{8\}=x$ time $(\{47\})=\{01000111\} \ll 1=\{8 \mathrm{E}\}$ (high bit set? no)
$\{57\} \cdot\{10\}=x$ time $(\{8 \mathrm{E}\})=(\{10001110\} \ll 1) \oplus\{11 \mathrm{~B}\}=\{07\}$
$\{57\}^{*}\{13\}=\{57\} \oplus\{A E\} \oplus\{07\}$

Key Expansion

$$
5.2
$$

Figure 11

Definition of SubWord()

Sbox

Definition of RotWord()
Rcon

AddRoundKey

$$
5.1 .4
$$

State is bytes, key schedule is words

SubBytes

5.1.1

Figure 6
Figure 7

ShiftRows

5.1 .2

Figure 8

MixColumns

$$
5.1 .3
$$

Figure 9

Equations above Figure 9

Finite Field Multiply

